Responsive image
博碩士論文 etd-0803118-093812 詳細資訊
Title page for etd-0803118-093812
論文名稱
Title
以綠色變性膠體緩釋材生物整治受六價鉻污染地下水
Application of slow-releasing green denaturing colloidal substrates to remediate hexavalent chromium contaminated groundwater
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-16
繳交日期
Date of Submission
2018-09-04
關鍵字
Keywords
變性膠體基質、管柱實驗、現地生物復育、次世代定序(NGS)
Slow-releasing green denaturing colloidal, Next generation sequencing, Microbial column experiment, In situ bioremediation
統計
Statistics
本論文已被瀏覽 5644 次,被下載 0
The thesis/dissertation has been browsed 5644 times, has been downloaded 0 times.
中文摘要
在過去受重金屬污染之六價鉻整治場址調查中發現,含水層中鉻污染主要源自工業廢水及有害廢棄物不當棄置所造成,六價鉻具有致癌性且因其所帶電荷性質與土壤相同,進而造成其在含水層之高移動性,而六價鉻污染物具有強氧化性,因此容易影響地下水含水層中之還原區間,故在整治工程上較不容易處理。近年來許多國內外學者致力於相關研究,利用微生物還原代謝之機制將污染物還原降解,且透過微生物分解土壤或地下水中之污染物,對於場址破壞性較小,可經由添加基質來增加其碳源濃度,透過提高碳源刺激微生物菌群生長進而加強生物整治成效,因此可透過現地加強式厭氧生物整治技術,針對長期受六價鉻污染地下水,推動生物還原且符合經濟之綠色整治技術。國內受地形(河流沖積扇及山勢)影響,使部分地區地下水含水層中呈現流速較快之情形,造成整治時所投入之整治藥劑因傳輸性高較易流失而提高整治成本,因此提高整體整治困難;本研究目的為研發綠色變性膠體緩釋材,其特性在於灌注後複合型膠體能形成一個介於固體與液體之間的特殊形態,膠體於含水層土壤孔隙中形成膠凝顆粒,增加此材料滯留與接觸污染物面積,可利用凝膠基質表面之官能基進行吸附及釋放碳源供微生物利用,同時凝膠基質所形成之三維立體網狀結構,亦可提供微生物附著提升整治效益。本研究先針對綠色變性膠體緩釋材進行基本特性分析,接著進行前導試驗及流通性測試,評估適用於土壤地下水之最佳化膠體緩釋材配比,另一方面,本研究利用凝膠基質組、凝膠結合糖蜜組及直接添加糖蜜組分別進行管柱實驗,模擬各組基質在含水層中各項水質參數、六價鉻還原去除、總鉻變化與分布之情形進行探討,最後通過次世代定序(next generation sequencing, NGS)分析技術結合即時定量聚合酶連鎖反應(real-time polymerase chain reaction, real-time PCR)於管柱實驗中進行菌相分析瞭解特徵基因和優勢菌之變化,以利後續現地整治應用。本研究之凝膠基質各配比經強度測試之結果顯示,當明膠濃度維持在3%且瓊脂濃度為0.5%時具有較佳之效果,當藥劑注入時可順利於土壤孔隙間形成膠羽顆粒增加地下水污染物與藥劑接觸面積。由管柱實驗結果顯示,凝膠基質於注入後pH範圍為pH 7.4至pH 7.5之間呈現中性,得知管柱內透過凝膠基質可緩衝受六價鉻污染水體pH值酸化及實驗後期基質發酵產生有機酸而抑制微生物生長問題;管柱實驗在凝膠基質添加後,實驗第四至五天內六價鉻濃度及呈現明顯下降趨勢,在實驗第十天後平均濃度低於0.1 mg/L,在此同時溶液中總鉻亦呈現明顯下降趨勢,其在管柱實驗後期平均濃度低於0.1 mg/L皆低於地下水污染管制標準。透過次世代定序分析管柱內土壤菌相結果得知,於初始組別中具功能性微生物比例為34.65%,而透過糖蜜基質添加後促進管柱內功能性微生物比例提升至89.38%,透過糖蜜基質添加之管柱組別,主要優勢菌種為Sporolactobacillus,通過代謝後可產生乳酸鹽,能提供其它微生物利用,並促進六價鉻生物整治還原之成效。結合上述結果得知,本研究所研發之綠色變性緩釋膠體,除了能夠有效控制pH值、穩定持續提供碳源供微生物利用、濃縮六價鉻於膠體成膠區及固定糖蜜基質於目標污染區域,延長糖蜜於灌注區之滯留時間,因此以綠色變性膠體緩釋材生物整治受六價鉻污染地下水具備創新研發、環境友善、與土水整治技術發展潛能。
Abstract
Heavy metal hexavalent chromium remediation of contaminated sites survey found that in the past, the main aquifer chromium contamination from industrial waste and hazardous waste caused by improper disposal, hexavalent chromium is carcinogenic and its electric charge and the nature of the soil same. This in turn results in high mobility in the aquifer. And hexavalent chromium having strong oxidizing contaminants, and therefore susceptible to the reduction in the aquifer interval, it is more difficult to handle on a renovation project. In recent years, many scholars dedicated to research, the use of microbial metabolic reduction mechanism of the reduction of pollutant degradation and decomposition of contaminants in the soil or groundwater through microbes, for sites less destructive, it can be increased by the addition of substrate concentration of carbon source, by raising the carbon source to stimulate the growth of microbial flora thereby strengthening the effectiveness of bioremediation. Therefore enhance anaerobic bioremediation technology through to now, for the long-term by hexavalent chromium contaminated groundwater, promote bio-economy in line with the reduction and green remediation technologies. Domestic terrain (mountains and river alluvial fan) affect the parts of the aquifer in the case showed faster the flow rate, resulting in improvement of the drug into the time of remediation due to high transmission losses and improve remediation costs more easily, thus improving the overall Remediation difficulties. Purpose of this study for the development of green denatured colloidal release material, wherein the perfusion characteristics thereof capable of forming a complex colloidal special form interposed between the solid and the liquid. Colloidal particles form a gel in soil pore water layer, this increased area of exposure to contaminants and material retention may be utilized functional groups of the surface of the substrate gel adsorption and release of carbon sources by microorganisms, while the gel matrix formed of three-dimensional a mesh structure, may also be provided to enhance microbial adhesion remediation efficiency. In this study, the basic characteristics of the green modified colloidal release material were first analyzed, followed by the lead test and the flow test to evaluate the optimal colloidal release material ratio suitable for soil groundwater. On the other hand, the study used the gel matrix. The tube-column experiments were carried out in the group, the gel-bound molasses group and the directly added molasses group. The water quality parameters, hexavalent chromium reduction and total chromium change and distribution of the matrix in each group were simulated. Finally, in column experiments with bacteria analyzed to understand the characteristics and advantages of the bacteria by the next generation of gene sequencing (next generation sequencing, NGS) for real time binding analysis by quantitative polymerase chain reaction (real-time polymerase chain reaction, real-time PCR) the changes to facilitate subsequent current remediation applications. The results of the strength tests of the gel matrix of the present study showed that the gelatin concentration was maintained at 3% and the agar concentration was 0.5%. When the pharmaceutical injection can be smoothly formed floc particles and an agent to increase the groundwater contaminants to the contact area between the soil pore. The results shown by the column, the gel matrix after injection to render a neutral pH range between pH 7.4 to pH 7.5, hexavalent chromium contaminated water that was acidified and pH of the gel matrix may be post-experimental buffer through the column by matrix organic acid fermentation inhibiting the growth of microbiological The development of this study denaturation green colloid release, in addition to effectively control the pH value, providing a carbon source for microbial stable for use, and concentrated to hexavalent chromium and colloidal gel-forming region is fixed to the target matrix molasses contaminated area, the extension region perfusion molasses the residence time, so green colloid degeneration slow-release material bioremediation of groundwater contaminated by hexavalent chromium with innovative research and development, environment-friendly, water and soil remediation technology development potential.
目次 Table of Contents
目錄
論文審定書 i
論文公開授權書 ii
謝誌 iii
摘要 iv
Abstract vi
目錄 ix
圖目錄 xii
表目錄 xiii
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 4
2.1地下水受鉻污染之概況 4
2.2六價鉻污染物的物化特性 6
2.3鉻污染對人體的危害 10
2.4重金屬的物理整治技術 11
2.5重金屬的化學整治技術 17
2.6重金屬的生物整治方法 19
2.6.1六價鉻生物還原 19
2.6.2常見的鉻酸鹽還原菌 20
2.7六價鉻經還原後化合物介紹 25
2.8阻斷型緩釋膠體基質載體之特性介紹 27
2.9次世代定序(NGS)分析技術與總體基因體學(Metagenomics)發展與應用 34
第三章 實驗材料與方法 37
3.1研究流程 37
3.2實驗材料 39
3.2.1實驗藥品 39
3.3實驗儀器與設備 39
3.4實驗設計 40
3.4.1膠體基質配比前導試驗 40
3.4.2 凝膠材料緩釋/阻隔六價鉻實驗 41
3.4.3微生物管柱實驗 41
3.5實驗基質材料分析 42
3.6基本水質分析 43
3.7次世代定序(NGS)分析 46
第四章 結果與討論 48
4.1膠體基質強度配比測試 48
4.2微生物管柱實驗 50
4.3管柱實驗組別DO、pH and ORP 50
4.4管柱內水樣總有機碳分析 56
4.5管柱內六價鉻及總鉻分析 58
4.6管柱內水樣-總鐵、亞鐵、硫酸鹽、硫化物分析 60
4.7管柱內氨氮.亞硝酸鹽.硝酸鹽變化 62
4.8管柱內甲烷及氫氣濃度變化 63
4.9菌相分析結果 66
第五章 結論與建議 68
5.1結論 68
5.2建議 69
參考文獻 70
參考文獻 References
Ackerley, D. F., Gonzalez, C. F., Keyhan, M., Blake, R., & Matin, A. (2004). Mechanism of chromate reduction by the Escherichia coli protein, NfsA, and the role of different chromate reductases in minimizing oxidative stress during chromate reduction. Environmental Microbiology, 6(8), 851-860.
Ajjabi, L. C., & Chouba, L. (2009). Biosorption of Cu2+ and Zn2+ from aqueous solutions by dried marine green macroalga Chaetomorpha linum. Journal of Environmental Management, 90(11), 3485-3489.
Apel, K., & Hirt, H. (2004). Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol., 55, 373-399.
Apiratikul, R., & Pavasant, P. (2008). Batch and column studies of biosorption of heavy metals by Caulerpa lentillifera. Bioresource technology, 99(8), 2766-2777.
Barakat, M. A., & Schmidt, E. (2010). Polymer-enhanced ultrafiltration process for heavy metals removal from industrial wastewater. Desalination, 256(1-3), 90-93.
Bilal, M., Asgher, M., Hu, H., & Zhang, X. (2016). Kinetic characterization, thermo-stability and Reactive Red 195A dye detoxifying properties of manganese peroxidase-coupled gelatin hydrogel. Water Science and Technology, 74(8), 1809-1820.
Bilal, M., Shah, J. A., Ashfaq, T., Gardazi, S. M. H., Tahir, A. A., Pervez, A., Haroon, H., Mahmood, Q. (2013). Waste biomass adsorbents for copper removal from industrial wastewater—a review. Journal of Hazardous Materials, 263, 322-333.
Blowes, D. (2002). Tracking hexavalent Cr in groundwater. Science, 295(5562), 2024-2025.
Boeris, P. S., Liffourrena, A. S., & Lucchesi, G. I. (2018). Aluminum biosorption using non-viable biomass of Pseudomonas putida immobilized in agar–agar: Performance in batch and in fixed-bed column. Environmental Technology & Innovation, 11, 105-115.
Bopp, L. H., & Ehrlich, H. L. (1988). Chromate resistance and reduction in Pseudomonas fluorescens strain LB300. Archives of Microbiology, 150(5), 426-431.
Branco, R., Chung, A.-P., Veríssimo, A., & Morais, P. V. (2005). Impact of chromium-contaminated wastewaters on the microbial community of a river. FEMS microbiology ecology, 54(1), 35-46.
Burakov, A. E., Galunin, E. V., Burakova, I. V., Kucherova, A. E., Agarwal, S., Tkachev, A. G., & Gupta, V. K. (2018). Adsorption of heavy metals on conventional and nanostructured materials for wastewater treatment purposes: A review. Ecotoxicology and Environmental Safety, 148, 702-712.
Cao, J., Zhang, G., Mao, Z., Fang, Z., & Yang, C. (2009). Precipitation of valuable metals from bioleaching solution by biogenic sulfides. Minerals engineering, 22(3), 289-295.
Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient techniques for the removal of toxic heavy metals from aquatic environment: A review. Journal of Environmental Chemical Engineering, 5(3), 2782-2799.
Cervantes, C., Campos-García, J., Devars, S., Gutiérrez-Corona, F., Loza-Tavera, H., Torres-Guzmán, J. C., & Moreno-Sánchez, R. (2001). Interactions of chromium with microorganisms and plants. FEMS microbiology reviews, 25(3), 335-347.
Chaturvedi, A., Bhattacharjee, S., Singh, A. K., & Kumar, V. (2018). A new approach for indexing groundwater heavy metal pollution. Ecological Indicators, 87, 323-331.
Chen, J., Tang, Y. Q., & Wu, X. L. (2012). Bacterial community shift in two sectors of a tannery plant and its Cr (VI) removing potential. Geomicrobiology Journal, 29(3), 226-235.
Coppola, M., Djabourov, M., & Ferrand, M. (2012). Unified phase diagram of gelatin films plasticized by hydrogen bonded liquids. Polymer, 53(7), 1483-1493.
Crini, G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in polymer science, 30(1), 38-70.
de Souza, F. B., de Lima Brandão, H., Hackbarth, F. V., de Souza, A. A. U., Boaventura, R. A. R., de Souza, S. M. A. G. U., & Vilar, V. J. P. (2016). Marine macro-alga Sargassum cymosum as electron donor for hexavalent chromium reduction to trivalent state in aqueous solutions. Chemical Engineering Journal, 283, 903-910.
Deng, L., Su, Y., Su, H., Wang, X., & Zhu, X. (2007). Sorption and desorption of lead (II) from wastewater by green algae Cladophora fascicularis. Journal of Hazardous Materials, 143(1-2), 220-225.
Desai, C., Parikh, R. Y., Vaishnav, T., Shouche, Y. S., & Madamwar, D. (2009). Tracking the influence of long-term chromium pollution on soil bacterial community structures by comparative analyses of 16S rRNA gene phylotypes. Research in microbiology, 160(1), 1-9.
Dhal, B., Thatoi, H. N., Das, N. N., & Pandey, B. D. (2013). Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: A review. Journal of Hazardous Materials, 250, 272-291.
Doores, S., & Westhoff, D. (1981). Heat resistance of Sporolactobacillus inulinus. Journal of food science, 46(3), 810-812.
Dudhagara, P., Bhavsar, S., Bhagat, C., Ghelani, A., Bhatt, S., & Patel, R. (2015). Web resources for metagenomics studies. Genomics, proteomics & bioinformatics, 13(5), 296-303.
Duconseille, A., Astruc, T., Quintana, N., Meersman, F., & Sante-Lhoutellier, V. (2015). Gelatin structure and composition linked to hard capsule dissolution: A review. Food Hydrocolloids, 43, 360-376.
El-Sikaily, A., El Nemr, A., Khaled, A., & Abdelwehab, O. (2007). Removal of toxic chromium from wastewater using green alga Ulva lactuca and its activated carbon. Journal of Hazardous Materials, 148(1-2), 216-228.
Fang, R., He, W., Xue, H., & Chen, W. (2016). Synthesis and characterization of a high-capacity cationic hydrogel adsorbent and its application in the removal of Acid Black 1 from aqueous solution. Reactive and Functional Polymers, 102, 1-10.
Farris, S., Song, J., & Huang, Q. (2009). Alternative reaction mechanism for the cross-linking of gelatin with glutaraldehyde. Journal of agricultural and food chemistry, 58(2), 998-1003.
Fierer, N., Leff, J. W., Adams, B. J., Nielsen, U. N., Bates, S. T., Lauber, C. L., ... & Caporaso, J. G. (2012). Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences, 109(52), 21390-21395.
Fleischmann, R. D., Adams, M. D., White, O., Clayton, R. A., Kirkness, E. F., Kerlavage, A. R., Bult, C., J., Tomb, J. F., Dougherty, B. A., & Merrick, J. M. (1995). Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science, 269(5223), 496-512.
Fosso-Kankeu, E., Mittal, H., Waanders, F., & Ray, S. S. (2017). Thermodynamic properties and adsorption behaviour of hydrogel nanocomposites for cadmium removal from mine effluents. Journal of Industrial and Engineering Chemistry, 48, 151-161.
Francavilla, M., Pineda, A., Lin, C. S. K., Franchi, M., Trotta, P., Romero, A. A., & Luque, R. (2013). Natural porous agar materials from macroalgae. Carbohydrate Polymers, 92(2), 1555-1560.
Fu, F., & Wang, Q. (2011). Removal of heavy metal ions from wastewaters: a review. Journal of Environmental Management, 92(3), 407-418.
Gabr, R., Hassan, S., & Shoreit, A. (2008). Biosorption of lead and nickel by living and non-living cells of Pseudomonas aeruginosa ASU 6a. International Biodeterioration & Biodegradation, 62(2), 195-203.
Gentile, G., Giuliano, L., D’Auria, G., Smedile, F., Azzaro, M., De Domenico, M., & Yakimov, M. M. (2006). Study of bacterial communities in Antarctic coastal waters by a combination of 16S rRNA and 16S rDNA sequencing. Environmental Microbiology, 8(12), 2150-2161.
Gheju, M. (2011). Hexavalent chromium reduction with zero-valent iron (ZVI) in aquatic systems. Water, Air, & Soil Pollution, 222(1-4), 103-148.
Gómez-Guillén, M., Pérez-Mateos, M., Gómez-Estaca, J., López-Caballero, E., Giménez, B., & Montero, P. (2009). Fish gelatin: a renewable material for developing active biodegradable films. Trends in Food Science & Technology, 20(1), 3-16.
Gopalakannan, V., & Viswanathan, N. (2016). One pot synthesis of metal ion anchored alginate–gelatin binary biocomposite for efficient Cr(VI) removal. International Journal of Biological Macromolecules, 83, 450-459.
Graham, T. (1861). X. Liquid diffusion applied to analysis. Philosophical transactions of the Royal Society of London, 151, 183-224.
Guo, L., Colby, R. H., Lusignan, C. P., & Whitesides, T. H. (2003). Kinetics of triple helix formation in semidilute gelatin solutions. Macromolecules, 36(26), 9999-10008.
Hashim, M. A., Mukhopadhyay, S., Sahu, J. N., & Sengupta, B. (2011). Remediation technologies for heavy metal contaminated groundwater. Journal of Environmental Management, 92(10), 2355-2388.
Henry, B.M. (2010). Biostimulation for anaerobic bioremediation of chlorinated solvents. In Situ Remediation of Chlorinated Solvent Plumes. Springer New York. 357-423.
Herngren, L., Goonetilleke, A., & Ayoko, G. A. (2005). Understanding heavy metal and suspended solids relationships in urban stormwater using simulated rainfall. Journal of Environmental Management, 76(2), 149-158.
Hopkinson, L., Cundy, A., Faulkner, D., Hansen, A., & Pollock, R. (2009). Electrokinetic Stabilization of Chromium (VI)‐Contaminated Soils.
Huang, K., Li, B., Zhou, F., Mei, S., Zhou, Y., & Jing, T. (2016). Selective solid-phase extraction of lead ions in water samples using three-dimensional ion-imprinted polymers. Analytical chemistry, 88(13), 6820-6826.
Jobby, R., Jha, P., Yadav, A. K., & Desai, N. (2018). Biosorption and biotransformation of hexavalent chromium [Cr(VI)]: A comprehensive review. Chemosphere, 207, 255-266.
Joutey, N. T., Sayel, H., Bahafid, W., & El Ghachtouli, N. (2015). Mechanisms of hexavalent chromium resistance and removal by microorganisms Reviews of Environmental Contamination and Toxicology Volume 233 (pp. 45-69): Springer.
Katsaveli, K., Vayenas, D., Tsiamis, G., & Bourtzis, K. (2012). Bacterial diversity in Cr (VI) and Cr (III)-contaminated industrial wastewaters. Extremophiles, 16(2), 285-296.
Kim, B.-C., Jeon, B. S., Kim, S., Kim, H., Um, Y., & Sang, B.-I. (2015). Caproiciproducens galactitolivorans gen. nov., sp. nov., a bacterium capable of producing caproic acid from galactitol, isolated from a wastewater treatment plant. International journal of systematic and evolutionary microbiology, 65(12), 4902-4908.
Kan, C.-C., Ibe, A. H., Rivera, K. K. P., Arazo, R. O., & de Luna, M. D. G. (2017). Hexavalent chromium removal from aqueous solution by adsorbents synthesized from groundwater treatment residuals. Sustainable Environment Research, 27(4), 163-171.
Karadağ, E., & Kundakcı, S. (2015). Application of highly swollen novel biosorbent hydrogels in uptake of uranyl ions from aqueous solutions. Fibers and Polymers, 16(10), 2165-2176.
Khan, M., & Lo, I. M. (2016). A holistic review of hydrogel applications in the adsorptive removal of aqueous pollutants: recent progress, challenges, and perspectives. Water research, 106, 259-271.
Kimbrough, D. E., Cohen, Y., Winer, A. M., Creelman, L., & Mabuni, C. (1999). A Critical Assessment of Chromium in the Environment. Critical Reviews in
Kimura, N. (2006). Metagenomics: access to unculturable microbes in the environment. Microbes and Environments, 21(4), 201-215.
Kononova, O. N., Bryuzgina, G. L., Apchitaeva, O. V., & Kononov, Y. S. (2015). Ion exchange recovery of chromium (VI) and manganese (II) from aqueous solutions. Arabian Journal of Chemistry.
Krachunov, M., Vassilev, D., Nisheva, M., Kulev, O., Simeonova, V., Dimitrov, V. (2015). Fuzzy Indication of Reliability in Metagenomics NGS Data Analysis. Procedia Computer Science, 51, pp.2859-2863.
Kurniawan, T. A., Chan, G. Y., Lo, W.-h., & Babel, S. (2006). Comparisons of low-cost adsorbents for treating wastewaters laden with heavy metals. Science of the total environment, 366(2-3), 409-426.
Li, H., Yu, Y., Zeng, Y., Chen, B., & Ren, D. (2006). Phylogenetic analysis of bacterial diversity in Pacific Arctic sediments. Wei sheng wu xue bao= Acta microbiologica Sinica, 46(2), 177-183.
Lin, L., Regenstein, J. M., Lv, S., Lu, J., & Jiang, S. (2017). An overview of gelatin derived from aquatic animals: Properties and modification. Trends in Food Science & Technology, 68, 102-112.
Lovley, D. R. (1993). Dissimilatory metal reduction. Annual Reviews in Microbiology, 47(1), 263-290.
Lu, Y. Z., Fu, L., Ding, J., Ding, Z. W., Li, N., & Zeng, R. J. (2016). Cr (VI) reduction coupled with anaerobic oxidation of methane in a laboratory reactor. Water research, 102, 445-452.
Luque, R. (2010). Algal biofuels: the eternal promise? Energy & Environmental Science, 3(3), 254-257.
Mardis, E.R. (2008). Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9, 387-402.
Martins, M., Faleiro, M. L., Chaves, S., Tenreiro, R., Santos, E., & Costa, M. C. (2010). Anaerobic bio-removal of uranium (VI) and chromium (VI): comparison of microbial community structure. Journal of Hazardous Materials, 176(1-3), 1065-1072.
Mahmoud, M. E. (2015). Water treatment of hexavalent chromium by gelatin-impregnated-yeast (Gel–Yst) biosorbent. Journal of Environmental Management, 147, 264-270.
Mahmoud, M. E., & Mohamed, R. H. A. (2014). Biosorption and removal of Cr(VI)–Cr(III) from water by eco-friendly gelatin biosorbent. Journal of Environmental Chemical Engineering, 2(1), 715-722.
Malaviya, P., & Singh, A. (2016). Bioremediation of chromium solutions and chromium containing wastewaters. Critical Reviews in Microbiology, 42(4), 607-633.
Mamais, D., Noutsopoulos, C., Kavallari, I., Nyktari, E., Kaldis, A., Panousi, E., Nikitopoulos, G., Antoniou, K., Nasioka, M. (2016). Biological groundwater treatment for chromium removal at low hexavalent chromium concentrations. Chemosphere, 152, 238-244.
Mardis, E. R. (2008). Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet., 9, 387-402.
Messer, J., Reynolds, M., Stoddard, L., & Zhitkovich, A. (2006). Causes of DNA single-strand breaks during reduction of chromate by glutathione in vitro and in cells. Free Radical Biology and Medicine, 40(11), 1981-1992.
Merino, S., Martín, C., Kostarelos, K., Prato, M., & Vázquez, E. (2015). Nanocomposite hydrogels: 3D polymer–nanoparticle synergies for on-demand drug delivery. ACS nano, 9(5), 4686-4697.
Mishra, S. (2014). Adsorption–desorption of heavy metal ions. Current Science, 601-612.
Mólgora, C. C., Domínguez, A. M., Avila, E. M., Drogui, P., & Buelna, G. (2013). Removal of arsenic from drinking water: A comparative study between electrocoagulation-microfiltration and chemical coagulation-microfiltration processes. Separation and Purification Technology, 118, 645-651.
Morais, P. V., Branco, R., & Francisco, R. (2011). Chromium resistance strategies and toxicity: what makes Ochrobactrum tritici 5bvl1 a strain highly resistant. Biometals, 24(3), 401-410.
Mohan, D., & Pittman, C. U. (2006). Activated carbons and low cost adsorbents for remediation of tri- and hexavalent chromium from water. Journal of Hazardous Materials, 137(2), 762-811.
Muyonga, J., Cole, C., & Duodu, K. (2004). Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocolloids, 18(4), 581-592.
Ota, A., Istenič, K., Skrt, M., Šegatin, N., Žnidaršič, N., Kogej, K., & Ulrih, N. P. (2018). Encapsulation of pantothenic acid into liposomes and into alginate or alginate–pectin microparticles loaded with liposomes. Journal of Food Engineering, 229, 21-31.
Ozmen, M. M., & Okay, O. (2005). Superfast responsive ionic hydrogels with controllable pore size. Polymer, 46(19), 8119-8127.
Palmer, C. D., & Wittbrodt, P. R. (1991). Processes affecting the remediation of chromium-contaminated sites. Environmental Health Perspectives, 92, 25-40.
Pan, J. H., Liu, R. X., & Tang, H. X. (2007). Surface reaction of Bacillus cereus biomass and its biosorption for lead and copper ions. Journal of Environmental Sciences, 19(4), 403-408.
Panagiotakis, I., Antoniou, K., Mamais, D., Pantazidou, M. (2015). Effects of Different Electron Donor Feeding Patterns on TCE Reductive Dechlorination Performance. Bulletin of environmental contamination and toxicology, 94(3), 289-294.
Pavasant, P., Apiratikul, R., Sungkhum, V., Suthiparinyanont, P., Wattanachira, S., & Marhaba, T. F. (2006). Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera. Bioresource technology, 97(18), 2321-2329.
Pellerin, C., & Booker, S. M. (2000). Reflections on hexavalent chromium: health hazards of an industrial heavyweight. Environmental Health Perspectives, 108(9), A402.
Pradhan, D., Sukla, L. B., Sawyer, M., & Rahman, P. K. S. M. (2017). Recent bioreduction of hexavalent chromium in wastewater treatment: A review. Journal of Industrial and Engineering Chemistry, 55, 1-20.
Qamar, M., Gondal, M., & Yamani, Z. (2011). Synthesis of nanostructured NiO and its application in laser-induced photocatalytic reduction of Cr (VI) from water. Journal of Molecular Catalysis A: Chemical, 341(1-2), 83-88.
Ramakrishnaiah, C., & Prathima, B. (2012). Hexavalent chromium removal from industrial wastewater by chemical precipitation method. Int J Eng Res Appl, 2, 599-603.
Ravachol, J., Borne, R., Meynial-Salles, I., Soucaille, P., Pagès, S., Tardif, C., & Fierobe, H. P. (2015). Combining free and aggregated cellulolytic systems in the cellulosome-producing bacterium Ruminiclostridium cellulolyticum. Biotechnology for biofuels, 8(1), 114.
Ravenschlag, K., Sahm, K., Pernthaler, J., & Amann, R. (1999). High bacterial diversity in permanently cold marine sediments. Applied and environmental microbiology, 65(9), 3982-3989.
Rees, D. A. (1969). Structure, conformation, and mechanism in the formation of polysaccharide gels and networks Advances in carbohydrate chemistry and biochemistry , 24, 267-332 ). Academic Press.
Romanenko , V., & Koren'kov, V. (1977). Pure culture of bacteria using chromates and bichromates as hydrogen acceptors during development under anaerobic conditions. Mikrobiologiia, 46(3), 414-417.
Saha, B., & Orvig, C. (2010). Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coordination Chemistry Reviews, 254(23-24), 2959-2972.
Saha, R., Nandi, R., & Saha, B. (2011). Sources and toxicity of hexavalent chromium. Journal of Coordination Chemistry, 64(10), 1782-1806.
Sahu, J., Acharya, J., & Meikap, B. (2009). Response surface modeling and optimization of chromium (VI) removal from aqueous solution using Tamarind wood activated carbon in batch process. Journal of Hazardous Materials, 172(2-3), 818-825.
Samantara, M. K., Padhi, R. K., Sowmya, M., Kumaran, P., & Satpathy, K. K. (2017). Heavy metal contamination, major ion chemistry and appraisal of the groundwater status in coastal aquifer, Kalpakkam, Tamil Nadu, India. Groundwater for Sustainable Development, 5, 49-58.
Santona, L., Castaldi, P., & Melis, P. (2006). Evaluation of the interaction mechanisms between red muds and heavy metals. Journal of Hazardous Materials, 136(2), 324-329.
Sattar, H., Aman, A., & Qader, S. A. U. (2018). Agar-agar immobilization: An alternative approach for the entrapment of protease to improve the catalytic efficiency, thermal stability and recycling efficiency. International Journal of Biological Macromolecules, 111, 917-922.
Shah, V., Jain, K., Desai, C., & Madamwar, D. (2011). Metagenomics and integrative ‘-omics’ technologies in microbial bioremediation: current trends and potential applications. Metagenomics: current innovations and future trends. Caister Academic Press, Norfolk, 211-240.
Shaheen, S. M., Derbalah, A. S., & Moghanm, F. S. (2012). Removal of heavy metals from aqueous solution by zeolite in competitive sorption system. International Journal of Environmental Science and Development, 3(4), 362.
Souiri, M., Gammoudi, I., Ouada, H. B., Mora, L., Jouenne, T., Jaffrezic-Renault, N., . . . Duncan, A. (2009). Escherichia coli-functionalized magnetic nanobeads as an ultrasensitive biosensor for heavy metals. Procedia Chemistry, 1(1), 1027-1030.
Standeven, A. M., Wetterhahn, K. E., & Kato, R. (1992). Ascorbate is the principal reductant of chromium (VI) in rat lung ultrafiltrates and cytosols, and mediates chromium–DNA binding in vitro. Carcinogenesis, 13(8), 1319-1324.
Takeno, N. (2005). Atlas of Eh-pH diagrams. Geological survey of Japan open file report, 419, 102.
Tanong, K., Tran, L. H., Mercier, G., & Blais, J. F. (2017). Recovery of Zn (II), Mn (II), Cd (II) and Ni (II) from the unsorted spent batteries using solvent extraction, electrodeposition and precipitation methods. Journal of cleaner production, 148, 233-244.
Tao, W., Chen, G., Zeng, G., Yan, M., Chen, A., Guo, Z., Huang, Z., He, K., Hu, L., Wang, L. (2016). Influence of silver nanoparticles on heavy metals of pore water in contaminated river sediments. Chemosphere, 162, 117-124.
Thakur, M. K., Thakur, V. K., Gupta, R. K., & Pappu, A. (2015). Synthesis and applications of biodegradable soy based graft copolymers: a review. ACS Sustainable Chemistry & Engineering, 4(1), 1-17.
Thakur, S., Govender, P. P., Mamo, M. A., Tamulevicius, S., & Thakur, V. K. (2017). Recent progress in gelatin hydrogel nanocomposites for water purification and beyond. Vacuum, 146, 396-408.
Thatoi, H., Das, S., Mishra, J., Rath, B. P., & Das, N. (2014). Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: A review. Journal of Environmental Management, 146, 383-399.
Thakur, V. K., & Thakur, M. K. (2015). Recent advances in green hydrogels from lignin: a review. International Journal of Biological Macromolecules, 72, 834-847.
Van Bemmelen, J. (1894). Das Hydrogel und das krystallinische Hydrat des Kupferoxyds. Zeitschrift für anorganische und allgemeine Chemie, 5(1), 466-483.
Tian, F., Yu, Y., Chen, B., Li, H., Yao, Y.-F., & Guo, X.-K. (2009). Bacterial, archaeal and eukaryotic diversity in Arctic sediment as revealed by 16S rRNA and 18S rRNA gene clone libraries analysis. Polar Biology, 32(1), 93-103.
Velimirovic, M., Schmid, D., Wagner, S., Micić, V., von der Kammer, F., & Hofmann, T. (2016). Agar agar-stabilized milled zerovalent iron particles for in situ groundwater remediation. Science of the total environment, 563-564, 713-723.
Venditti, F., Ceglie, A., Palazzo, G., Colafemmina, G., & Lopez, F. (2007). Removal of chromate from water by a new CTAB–silica gelatin composite. Journal of Colloid and Interface Science, 310(2), 353-361.
Vincent, A. T., Derome, N., Boyle, B., Culley, A. I., & Charette, S. J. (2017). Next-generation sequencing (NGS) in the microbiological world: How to make the most of your money. Journal of microbiological methods, 138, 60-71.
Wallenstein, M. D., McMahon, S., & Schimel, J. (2007). Bacterial and fungal community structure in Arctic tundra tussock and shrub soils. FEMS microbiology ecology, 59(2), 428-435.
Whiteley, C. G., & Lee, D. J. (2006). Enzyme technology and biological remediation. Enzyme and Microbial Technology, 38(3), 291-316.
Wilbur, S., Abadin, H., Fay, M., Yu, D., Tencza, B., & Ingerman, L. (2012). Toxicological Profile for Chromium. Atlanta (GA): US Department of Health and Human Services. Public Health Service, Agency for Toxic Substances and Disease Registry, 24049864.
Yang, J., Yu, M., & Qiu, T. (2014). Adsorption thermodynamics and kinetics of Cr(VI) on KIP210 resin. Journal of Industrial and Engineering Chemistry, 20(2), 480-486.
Zheng, Y., She, C., Yao, K., Guo, X., Zhang, H., Yang, T., & Li, M. (2015). Contamination effects of drilling fluid additives on cement slurry. Natural Gas Industry B, 2(4), 354-359.
Zhitkovich, A. (2011). Chromium in drinking water: sources, metabolism, and cancer risks. Chemical research in toxicology, 24(10), 1617-1629.
Zhu, W.-P., Sun, S.-P., Gao, J., Fu, F.-J., & Chung, T.-S. (2014). Dual-layer polybenzimidazole/polyethersulfone (PBI/PES) nanofiltration (NF) hollow fiber membranes for heavy metals removal from wastewater. Journal of Membrane Science, 456, 117-127.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.144.124.232
論文開放下載的時間是 校外不公開

Your IP address is 3.144.124.232
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code