Responsive image
博碩士論文 etd-0803118-115227 詳細資訊
Title page for etd-0803118-115227
論文名稱
Title
於氧化鎂基板上成長氧化亞銅/摻鎂氧化鋅薄膜與異質結構的研究
Study on thin film and heterostructure growth of Cu2O/ZnxMg1-xO on MgO substrate
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
140
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-08-27
繳交日期
Date of Submission
2018-09-03
關鍵字
Keywords
氧化亞銅、氧化鋅、摻鎂氧化鋅、氧化鎂基板、分子束磊晶法
Cu2O, ZnO, ZnxMg1-xO, MgO substrate, Molecular beam epitaxy
統計
Statistics
本論文已被瀏覽 5645 次,被下載 3
The thesis/dissertation has been browsed 5645 times, has been downloaded 3 times.
中文摘要
本研究使用分子束磊晶法在低晶格失配的(100)、(110)和(111)氧化鎂基板上成長氧化亞銅/摻鎂氧化鋅磊晶異質結構,探討退火前處理對氧化鎂基板表面形貌以及磊晶成長的影響。磊晶前以原子力顯微鏡觀察原生氧化鎂基板及經過不同處理後基板的表面形貌和粗糙度,成長磊晶的試片會以X光繞射分析儀分析晶體結構與磊晶品質,以掃描式電子顯微鏡與能量散佈分析儀分析試片表面的形貌與元素成份,以紫外-可見光譜儀量測試片穿透光譜並求得不同鋅含量岩鹽礦摻鎂氧化鋅能隙值。
原子力顯微鏡分析顯示(100)氧化鎂基板經拋光後粗糙度小於1.00 nm,但表面並未觀察到明顯的階差結構。經過退火後的基板表面呈現階差結構,但是有許多粒徑數十奈米的顆粒分布在表面上,以高純水拋光可以移除顆粒,退火和水拋後的表面平均粗糙度降低0.50 nm。(110)氧化鎂原生基板表面充滿孔洞,退火後孔洞被填補,表面變得相當平坦,平坦區域的平均粗糙度約為0.30 nm。(111)氧化鎂基板是帶有高表面能的極性面,拋光後表面仍有明顯刮痕且粗糙度甚大,在1000 oC退火24 小時以上表面原子重新排列後可以形成階差結構,但是平均粗糙度仍高達4.00 nm。X光繞射分析顯示(100)、(110)和(111)基板經過退火後皆能成長高鋅含量的岩鹽礦摻鎂氧化鋅磊晶,成功在表面能較高的(110)和(111)面成功磊晶可歸因於基板經過退火處理後表面平均粗糙度下降,表面階差結構提供良好的成長位置。掃描式電子顯微鏡分析結果顯示岩鹽礦摻鎂氧化鋅磊晶表面是立方突起的顆粒,而纖鋅礦摻鎂氧化鋅薄膜表面則為混亂分佈的迷宮狀圖案,氧化亞銅則為直徑約20 nm的小晶粒形貌。
Abstract
Cu2O/ZnxMg1-xO epilayers and heteroepitaxial structures were grown on MgO substrates with low lattice mismatch by molecular beam epitaxy. MgO substrates with three orientations: (100), (110) and (111) were used. Special emphasis on the effect of various pre-treatments on the surface morphology and roughness of the substrate surface is studied. The surface morphology of the MgO substrate surface was characterized by atomic force microscopy (AFM). The composition, orientation and crystallinity of the ZnxMg1-xO and Cu2O films were analyzed by X-ray diffraction (XRD)、scanning electron microscopy (SEM)、energy dispersive x-ray spectroscopy (EDS) and UV-Vis spectrometer.
AFM results showed that no terrace structure could be observed on the as-polished (100) surface though its root-mean-square roughness was low. After annealing, the step-and-terrace structure was present associated with particles of tens of nanometers in diameter. These particles could be removed by polishing in water. A smooth and particle-free surface was thus obtained by high temperature annealing and water polishing. The (110) surface exhibited high density of holes which were removed by high temperature annealing. Finally, the as-polished (111) surface filled with scratches and a high roughness value, probably due to its polar character. After annealed at 1000 oC for 24 hours, the terrace structure was resolved though the average roughness is still high. ZnxMg1-xO epilayers with x>0.70 and Cu2O/ ZnxMg1-xO heterostructure were successful grown on the (100), (110) and (111) MgO substrates.
目次 Table of Contents
論文審定書 i
致謝 ii
摘要 iii
Abstract iv
目錄 v
表次 viii
圖次 ix
第一章 前言 1
第二章 文獻回顧與理論基礎 3
2.1 氧化鎂(MgO)基板 3
2.1.1 MgO(100)基板 3
2.1.2 MgO(110)基板 4
2.1.3 MgO(111)基板 5
2.2 氧化鋅晶體結構與相變化 6
2.2.1 氧化鋅的晶體結構 6
2.2.2 氧化鋅的相變化 7
2.3 氧化鋅-氧化鎂二元系統 8
2.3.1 成長摻鎂氧化鋅的方法 9
2.4 氧化鋅和岩鹽礦/纖鋅礦摻鎂氧化鋅的光電特性 11
2.4.1 氧化鋅的光電特性 11
2.4.2 岩鹽礦/纖鋅礦摻鎂氧化鋅的光電特性 12
2.5 氧化亞銅特性 13
2.5.1 成長氧化亞銅的方法 14
2.6 光偵測器 16
2.6.1 氧化亞銅與氧化鋅的異質接面 17
2.6.2 氧化亞銅與氧化鋅異質接面應用於太陽能電池 18
第三章 實驗方法 20
3.1 分子束磊晶成長系統 20
3.2 基板前處理 21
3.3 磊晶成長步驟 23
3.4 試片分析方法 24
3.4.1 原子力顯微鏡分析 24
3.4.2 X光繞射分析 24
3.4.3 掃描式電子顯微鏡分析 24
3.4.4 穿透光譜分析 25
第四章 實驗結果 26
4.1 氧化鎂基板前處理與表面分析 26
4.1.1 MgO(100)基板 26
4.1.2 MgO(110)基板 28
4.1.3 MgO(111)基板 30
4.2 MgO基板退火前處理對成長RS-ZMO磊晶的影響 31
4.3 在不同氧化鎂基板方向上成長摻鎂氧化鋅的分析 33
4.3.1 X光繞射分析 33
4.3.2 表面形貌分析 37
4.3.3 穿透光譜分析 41
第五章 結果與討論 43
5.1 MgO基板前處理 43
5.2 MgO基板前處理對ZMO磊晶的影響 44
5.3 MgO基板上成長Cu2O 44
5.4 MgO基板上成長Cu2O/ZMO異質結構 45
第六章 結論 47
參考文獻 48
表格 54
圖片 59
參考文獻 References
[1] I. Akasaki, H. Amano and S. Nakamura, “GaN-based blue light emitting device development”, Achievement Facts Sheet, Takeda Foundation April 5, 2002.
[2] Z. Alaie, S. M. Nejad and M. H. Yousefi, “Recent advances in ultraviolet photodetectors”, Materials Science in Semiconductor Processing, 29 (2015) 16-55.
[3] T. Li, D. J. H. Lambert, M. M. Wong, C. J. Collins, B. Yang, A. L. Beck, U. Chowdhury, R. D. Durpuis and J. C. Campbell, “Low-noise back-illuminated AlxGa1-xN-based p-i-n solar-blind ultraviolet photodetectors”, IEEE Journal of Quantum Electronics, 37 (2001) 538-545.
[4] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho. and H. Morkoc, “A comprehensive review of ZnO materials and devices”, Journal of Applied Physics, 98 (2005) 041301.
[5] A. K. Sharma, J. Narayan, J. F. Muth, C. W. Teng, C. Jin, A. Kvit, R. M. Lolbas and O. W. Holland, “Optical and structural properties of epitaxial MgxZn1-xO alloys”, Applied Physics Letters, 75 (1999) 3327-3329.
[6] Y. S. Choi, J. W. Kang, D. K. Hwang and S. J. Park, “Recent advances in ZnO-based light-emitting diodes”, IEEE Transactions on Electron Devices, 57 (2010) 26-41.
[7] L. K. Wang, Z. G. Ju, C. X. Shan, J. Zheng, B. H. Li, Z. Z. Zhang, B. Yao, D. X. Zhao, D. Z. Shen and J. Y. Zhang, “Epitaxial growth of high quality cubic MgZnO films on MgO substrate”, Journal of Crystal Growth, 312 (2010) 875-877.
[8] M. C. Wen, S. A. Lu, L. Chang, M. M. C. Chou and K. H. Ploog, “Epitaxial growth of rocksalt Zn1-xMgxO on MgO (100) substrate by molecular beam epitaxy”, Journal of Crystal Growth, 477 (2017) 169-173.
[9] M. A. Khan, M. Shatalov, H. P. Maruska, H. M. Wang and E. Kuokstis, “III–nitride UV devices”, Japanese Journal of Applied Physics, 44 (2005) 7191-7206.
[10] B. K. Meyer, A. Polity, D. Reppin, M. Becker, P. Hering, P. J. Llar, Th. Sander, C. Reindl, J. Benz, M. Eickhoff, C. Heiliger, M. Heinemann, J. Bläsing, A. Krost, S. Shokovets, C. Müller and C. Ronning, “Binary copper oxide semiconductors: From materials towards devices”, Physica Status Solidi (b) 249 (2012) 1487-1509.
[11] W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p‐n junction solar cells”, Journal of Applied Physics, 32 (1961) 510-519.
[12] Z. Duan, A. Du Pasquier, Y. Lu, Y. Xu and E. Garfunkel, “Effects of Mg composition on open circuit voltage of Cu2O/MgxZn1-xO heterojunction solar cells”, Solar Energy Materials and Solar Cells, 96 (2012) 292-297.
[13] T. K. S. Wong, S. Zhuk, S. M. Panah and G. K. Dalapati, “Current status and future prospects of copper oxide heterojunction solar cells”, Materials, 9 (2016) 271.
[14] A. E. Gunnæs, S. Gorantla, O. M. Løvvik, J. Gan, P. A. Carvalho, B. G. Svensson, E. V. Monakhov, K. Bergum, I. T. Jensen and S. Diplas, “Epitaxial strain-induced growth of CuO at Cu2O/ZnO interfaces”, The Journal of Physical Chemistry C, 120 (2016) 23552-23558.
[15] D. K. Aswal, K. P. Muthe, S. Tawde, S. Chodhury, N. Bagkar, A. Singh, S. K. Gupta and J. V. Yakhmi, “XPS and AFM investigations of annealing induced surface modifications of MgO single crystals”, Journal of Crystal Growth, 236 (2002) 661-666.
[16] A. Syrlybekov, E. Arca, R. Verre, C. O. Coileain, O. Toktarbaiuly, A. Khalid, H. Zhang and I. V. Shvets, “Induced morphological changes on vicinal MgO (100) subjected to high‐temperature annealing: step formation and surface stability”, Surface and Interface Analysis, 47 (2015) 969-977.
[17] D. R. Giese, F. J. Lamelas, H. A. Owen, R. Plass and M. Gajdardziska-Josifovska, “Atomic force microscopy and scanning electron microscopy study of MgO (110) surface faceting”, Surface science, 457 (2000) 326-336.
[18] R. Plass, J. Feller and M. Gajdardziska-Josifovska, “Morphology of MgO (111) surfaces: artifacts associated with the faceting of polar oxide surfaces into neutral surfaces”, Surface science, 414 (1998) 26-37.
[19] V. E. Henrich, “Thermal faceting of (110) and (111) surfaces of MgO”, Surface Science, 57 (1976) 385-392.
[20] M. Gajdardziska-Josifovska, P. A. Crozier and J. M. Cowley, “A (√ 3×√ 3) R30° reconstruction on annealed (111) surfaces of MgO”, Surface Science Letters, 248 (1991) L259-L264.
[21] A. Seko, F. Oba, A. Kuwabara and I. Tanaka, “Pressure-induced phase transition in ZnO and ZnO−MgO pseudobinary system: A first-principles lattice dynamics study”, Physical Review B, 72 (2005) 024107.
[22] J. E. Jaffe and A. C. Hess, “Hartree-Fock study of phase changes in ZnO at high pressure”, Physical Review B, 48 (1993) 7903-7909.
[23] J. A. Sans and A. Segura, “Optical properties and structural phase transitions in MgxZn1-xO under hydrostatic pressure”, High Pressure Research, 24 (2004) 119-127.
[24] S. Desgreniers, “High-density phases of ZnO: Structural and compressive parameters”, Physical Review B, 58 (1998) 120-105.
[25] F. Decremps, F. Datchi, A. M. Saitta, A. Polian, S. Pascarelli, A. Di Cicco, J. P. Itiѐ, and F. Baudelet, “Local structure of condensed zinc oxide”, Physical Review B, 68 (2003) 104101.
[26] H. L. Liang, Z. X. Mei, Z. L. Liu, Y. Guo, A. Yu. Azarov, A. Yu. Kuznetsov, A. Hallen and X. L. Du, “Growth of single-phase Mg0.3Zn0.7O films suitable for solar-blind optical devices on RS-MgO substrates”, Thin Solid Films, 520 (2012) 1705-1708.
[27] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai, Y. Yoshida, T. Yasuda and Y. Segawa, “MgxZn1-xO as a II–VI widegap semiconductor alloy”, Applied Physics Letters, 72 (1998) 2466-2468.
[28] S. Choopun, R. D. Vispute, W. Yang, R. P. Sharma, T. Venkatesan and H. Shen, “Realization of band gap above 5.0 eV in metastable cubic-phase MgxZn1-xO alloy films”, Applied Physics Letters, 80 (2009) 1529-1531.
[29] T. Takagi, H. Tanaka, S. Fujita and S. Fujita, “Molecular beam epitaxy of high Magnesium content single-phase wurtzite MgxZn1-xO alloys (x≃ 0.5) and their application to solar-blind region photodetectors”, Japanese Journal of Applied Physics, 42 (2003) L401-L403.
[30] L. K. Wang, Z. G. Ju, J. Y. Zhang, J. Zheng, D. Z. Shen, B. Yao, D. X. Zhao, Z. Z. Zhang, B. H. Li and C. X. Shan, “Single-crystalline cubic MgZnO films and their application in deep-ultraviolet optoelectronic devices”, Applied Physics Letters, 95 (2009) 131113.
[31] M. Kunisu, I. Tanaka, T. Yamamoto, T. Suga and T. Mizoguchi, “The formation of a rock-salt type ZnO thin film by low-level alloying with MgO”, Journal of Physics: Condensed Matter, 16 (2004) 3801-3806.
[32] K. K. Kim, S. Niki, J. Y. Oh, J. O. Song, T. Y. Seong, S. J. Park, S. Fujita and S. W. Kim, “High electron concentration and mobility in Al-doped n-ZnO epilayer achieved via dopant activation using rapid-thermal annealing”, Journal of Applied Physics, 97 (2005) 066103.
[33] M. S. Oh, D. K. Hwang, D. J. Seong, H. S. Hwang, S. J. Park and E. D. Kim, “Improvement of characteristics of Ga-doped ZnO grown by pulsed laser deposition using plasma-enhanced oxygen radicals”, Journal of The Electrochemical Society, 155 (2008) D599-D603.
[34] Z. G. Ju, C. X. Shan, D. Y. Jiang, J. Y. Zhang, B. Yao, D. X. Zhao, D. Z. Shen and X. W. Fan, “MgxZn1-xO-based photodetectors covering the whole solar-blind spectrum range”, Applied Physics Letters, 93 (2008) 173505.
[35] H. Jiang and T. Egawa, “High quality AlGaN solar-blind Schottky photodiodes fabricated on AIN/sapphire template”, Applied Physics Letters, 90 (2007) 121121.
[36] F. Biccari, “Defects and doping in Cu2O”, PhD thesis in Sapienza University, 2012.
[37] B. Tazenkov and F. Gruzdev, “Effect of electric-field on hole mobility in cuprous-oxide”, Solid State Physics, 18 (1976) 3716-3718.
[38] M. Zouaghi, M. Tapiero, J.P. Zielinger and R. Burgraf, “Hall mobility and hole density in photoactivated Cu2O single crystals”, Solid State Communications, 8 (1970) 1823-1825.
[39] H. Shimada and T. Masumi, “Hall mobility of positive holes in Cu2O”, Journal of the Physical Society of Japan, 58 (1989) 1717-1724.
[40] Y. Nishi, T. Miyata and T. Minami, “Electrochemically deposited Cu2O thin films on thermally oxidized Cu2O sheets for solar cell applications”, Solar Energy Materials and Solar Cells, 155 (2016) 405-410.
[41] J. Gan, S. Gorantla, H. N. Riise, Ø. S. Fjellvåg, S. Diplas, O. M. Løvvik, B. G. Svensson and A. E. Gunnæs, “Structural properties of Cu2O epitaxial films grown on c-axis single crystal ZnO by magnetron sputtering”, Applied Physics Letters, 108 (2016) 152110.
[42] S. H. Wee, P. S. Huang, J. K. Lee and A. Goyal, “Heteroepitaxial Cu2O thin film solar cell on metallic substrates”, Scientific Reports, 5 (2015) 16272.
[43] M. Kracht, J. Schörmann and M. Eickhoff, “Plasma assisted molecular beam epitaxy of Cu2O on MgO (001): Influence of copper flux on epitaxial orientation”, Journal of Crystal Growth, 436 (2016) 87-91.
[44] Y. Tolstova, S. S. Wilson and H. A. Atwater, “Single phase, single orientation Cu2O (100) and (110) thin films grown by plasma-assisted molecular beam epitaxy”, Journal of Crystal Growth, 410 (2015) 77-81.
[45] Y. N. Hou, Z. X. Mei, Z. L. Liu, T. C. Zhang and X. L. Du, “Mg0.55Zn0.45O solar-blind ultraviolet detector with high photoresponse performance and large internal gain”, Applied Physics Letters, 98 (2011) 103506.
[46] D. Walker, E. Monroy, P. Kung, J. Wu, M. Hamilton, F. J. Sanchez, J. Diaz, M. Razeghi, “High-speed, low-noise metal–semiconductor–metal ultraviolet photodetectors based on GaN”, Applied Physics Letters, 74 (1999) 762-764.
[47] T. C. Zhang, Y. Guo, Z. X. Mei, C. Z. Gu and X. L. Du, “Visible-blind ultraviolet photodetector based on double heterojunction of n-Zn O/insulator-MgO ∕ p-Si”, Applied Physics Letters, 94 (2009) 113508.
[48] S. Siol, J. C. Hellmann, S. D. Tilley, M. Graetzel, J. Morasch, J. Deuermeier, W. Jaegermann and A. Klein, “Band alignment engineering at Cu2O/ZnO heterointerfaces”, ACS Applied Materials & Interfaces, 8 (2016) 21824-21831.
[49] M. Yang, L. Zhu, Y. Li, L. Cao and Y. Guo, “Asymmetric interface band alignment of Cu2O/ZnO and ZnO/Cu2O heterojunctions”, Journal of Alloys and Compounds, 578 (2013) 143-147.
[50] A. L. Febvrier, J. Jensen and P. Eklund, “Wet-cleaning of MgO (001): Modification of surface chemistry and effects on thin film growth investigated by x-ray photoelectron spectroscopy and time-of-flight secondary ion mass spectroscopy”, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 35 (2017) 021407.
[51] C. Y. J. Lu, T. Yan, L. Chang, K. H. Ploog, M. M. C. Chou and C. M. Chiang, “Rock-salt Zn1-xMgxO epilayer having high Zn content grown on MgO (100) substrate by plasma-assisted molecular beam epitaxy”, Journal of Crystal Growth, 378 (2013) 168-171.
[52] 何明原,以分子束磊晶法於氧化鎂基板與鋁酸鋰基板上成長摻銅氧化鋅磊晶的研究,國立中山大學材料與光電科學學系碩士論文,(2014)。
[53] 盧思安,岩鹽結構摻鎂氧化鋅的磊晶成長及其電性研究,國立中山大學材料與光電科學學系碩士論文,(2016)。
[54] L. A. Bendersky, I. Takeuchi, K. -S. Chang, W. Yang, S. Hullavarad and R. D. Vispute, “Microstructural study of epitaxial Zn1-xMgxO composition spreads”, Journal of Applied Physics, 98 (2005) 083526.
[55] A. Soon, M. Todorova, B. Delley and C. Stampfl,“Thermodynamic stability and structure of copper oxide surfaces: A first-principles investigation”, Physical Review B, 75 (2007) 125420.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code