Responsive image
博碩士論文 etd-0803118-160308 詳細資訊
Title page for etd-0803118-160308
論文名稱
Title
以Z掃描對二維結構材料 Ge/SiC 與 Bi2Te3 探討非線性光學特性分析
Nonlinear Optical Property of 2-D Material Ge/SiC Superlattice and Bi2Te3 by Z-scan
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
93
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-28
繳交日期
Date of Submission
2018-09-03
關鍵字
Keywords
超晶格結構、非線性光學、Z掃描、碲化鉍
Nonlinear optics, Z-scan, Bi2Te3, Super-lattice
統計
Statistics
本論文已被瀏覽 5622 次,被下載 1
The thesis/dissertation has been browsed 5622 times, has been downloaded 1 times.
中文摘要
為了開發一些具有潛力的二維結構的非線性光學材料,並填補材料在特定波度與強度下非線性光學知識的不完備,我們在1056nm波段下,所以我們利用Z掃瞄系統進行對奈米等級的薄膜量測,分別對Ge/SiC超晶格結構與碲化鉍進行非線性光學量測。
第一部分Ge/SiC為利用電漿氣相增強化學沉積法沉積碳化矽/鍺/碳化矽超晶格結構,各層厚度為10nm,層數為20層,總厚度約為200nm。透過Z掃描量測,發現有雙效應的現象,而隨著強度上升反飽和的趨勢越明顯,利用Z掃描雙效應公式擬合後得到的飽和強度為 至 隨強度上升而逐漸增大,雙光子吸收係數為 不隨強度而改變。而非線性折射量測結果為4.12 。
第二部分我們利用Z掃描進行Z掃描實驗,嘗試探究碲化鉍表面態與塊材態間的非線性特性複合行為並解釋高低激發功率之下不同飽和吸收行為間的穿透率不連續的現象。結果發現在飽和強度會隨著強度有趨近線性上升的狀況,而非線性雙光子吸收係數則於100W後,約在 左右。非線性折射率量測為負透鏡效應, 值從 上升至 ,負透鏡來源猜測來自強烈的雙光子吸收效應,這也證實了在表面態飽和吸收前存在著反飽和效應使穿透率降低。
Abstract
2D layer structures have been attracted plenty of attention due to their remarkable properties and application potential. To realize 2-D material nonlinear optical applications, including wavelength generation, ultrafast optical processing, and saturable absorber for ultrafast laser, the information of optical nonlinearity property for given material is very important. In this thesis, using home-made Z-scan measurement with tunable peak intensity ranging from 103 to 108 W/cm2, Ge/SiC super-lattice layers structure and Bi2Te3 were studied.
In the first part, using HVPE growth, Ge/Si super-lattice layer structures were fabricated. The thickness of Ge or SiC was 10nm and the name of Ge/SiC pair and total thickness are 10 and 200nm, respectively. The clear power dependent Z-scan measurement was observed. The increasing saturation intensity from to and almost fixed two photon absorption coefficient of as increasing excitation peak intensity from 15.8 to 132 were analyzed. The n2 of around 4.12 was accordingly estimated.
In the second part, ultra-low peak intensity (103 to 105 W/cm2) z-scan measurement was proposed and buildup for understanding the discontinuity of conventional nonlinear transmission with low and high pulse energy. The two photon absorption behavior was observed and is with tremendous large coefficient of for excitation power of 100W. This can be therefore used to interpret and resolve the discontinuity. The clear self-defocusing phenomena was investigated as well.
目次 Table of Contents
目錄
中文審定書 i
英文審定書 ii
致謝 iii
摘要 iv
Abstract v
目錄 vi
圖次 ix
表次 xiii
第一章 緒論 1
1.1前言 1
1.2 論文動機 2
1.3 論文架構 3
第二章 非線性光學量測技術與研究 4
2.1 非線性光學介紹 4
2.1.1 光學非線性機制與原理 4
2.2 自相位調變(Self-Phase Modulation) 6
2.2.1自相位調變原理 6
2.2.2 自相位調變架設與量測方法 8
2.3 四波混頻(Four-wave mixing) 9
2.3.1 四波混頻原理 9
2.3.2 四波混頻架設與量測方法 11
2.4 Z掃描(Z-Scan) 12
2.4.1 光的自聚焦與自散焦與Z掃描系統架設 12
2.4.2 Z掃描理論計算 14
2.5 總結 17
第三章 以Z掃描量測Ge/SiC超晶格非線性光學特性 18
3.1矽鍺複合物介紹與實驗動機 18
3.2 Ge/SiC的超晶格結構與分析 22
3.2.1 Ge/SiC的超晶格結構 22
3.2.2 Ge/SiC的超晶格的穿透譜量測 24
3.2.3拉曼光譜分析 26
3.3利用Z掃描對Ge/SiC的非線性光學量測與分析 28
3.3.1脈衝雷射峰值能量與光斑大小 28
3.3.2 實驗架設與測試 30
3.3.3 Ge/SiC三明治結構的非線性吸收 32
3.3.4 SiC/Ge三明治結構的非線性折射 38
3.4 結論 39
第四章 以Z掃描量測拓樸絕緣體之表面態與塊材態之間的非線性光學複合行為 40
4.1 拓樸絕緣體的特性與未來應用 40
4.2 碲化鉍飽和吸收行為背景回顧以及實驗動機 43
4.3以甩模-共還原法製備的碲化鉍其特性表徵與定性分析 46
4.3.1 甩模-共還原法介紹:碲化鉍拓樸絕緣體薄膜製備 46
4.3.2碲化鉍原子力顯微鏡分析圖與穿透譜 49
4.3.3拉曼光譜圖 51
4.4用Z掃描量測碲化鉍在塊材態與表面態間的光學特性 53
4.4.1 Z掃描實驗參數的設定 53
4.4.2 碲化鉍Open aperture量測與非線性吸收特性分析 55
4.4.3 不同強度下的非線性折射率 64
4.4.4 碲化鉍優值分析 68
4.5 總結 69
第五章 結論與未來展望 70
參考文獻 71


圖次
圖2-1 脈衝光源藉由相位調變產生的頻率改變 7
圖2-2 SPM系統架設示意圖 8
圖2-3 (a)入射光源光譜(b),(c) & (d) 不同入射強度下的光譜變化 8
圖2-4 (a) 非簡併態四波混頻示意圖 10
圖2-4 (b) 簡併態四波混頻示意圖 10
圖2-5 簡併四波混頻系統架設圖 11
圖2-6四波混頻光譜圖 11
圖2-7 Z掃描簡易架設圖 12
圖2-8 經過樣品產生的聚散交狀況與偵測器接收情形 13
圖3-1 鍺的能隙與能態密度圖 18
圖3-2 SEG SiGe HBT的SEM剖面圖 18
圖3-3波導式光電探測器 19
圖3-4 感光耦合元件 19
圖3-5 文獻中用以產生鎖模雷射的SBR結構與折射率曲線和電場駐波圖 19
圖3-6 雷射共振腔示意圖 20
圖3-7 (a)Er:Yb玻璃雷射的頻譜圖(b)punp雷射的頻譜 20
(c)利用自相關量測的雷射脈寬 20
圖3-8 (a)鍺在 的 21
圖3-8 (b)鍺在 的 理論數據 21
圖3-9 Ge/SiC的超晶格結構示意圖 22
圖3-10 SiC能帶結構圖 23
圖3-11 SiC/Ge 超晶格結構下的SEM圖 23
圖3-12 穿透譜儀器架設圖 24
圖3-13 (a) 波長在1000~1700nm的穿透譜與線性吸收係數 25
圖3-13 (b) 波長在500~1000nm的穿透譜與線性吸收係數 25
圖3-14 (a)Ge/SiC的拉曼圖(Ge-Ge) 26
圖3-14 (b)Ge/SiC的拉曼圖(Si-C、C-C) 26
圖3-15 文獻中Ge在 拉曼圖 26
圖3-16 以刀口法量測整個聚焦光的光班半徑變化 29
圖3-17 以CCD在距焦點處四公分量測光班半徑變化 29
圖3-18 Z-scan架設圖 30
圖3-19 (a) 3-layer石墨烯的非線性折射率分析 31
圖3-19 (b) 3-layer 石墨稀的飽和吸收係數分析 31
圖3-20 平均功率18mW下SiC/Ge的Open aperture Z-scan結果 32
圖3-21 不同峰值強度下的open aperture下的Z-scan結果 35
圖3-22 (a) 飽和強度與峰值強度關係圖 35
圖3-22 (b) 雙光子吸收係數與峰值強度關係圖 35
圖3-23 二能級系統示意圖 36
圖3-24 (a)Open aperture與Close aperture 38
圖3-24 (b) Close aperture除上 Open aperture後的圖形 38
圖4-1不同情況下的電子狀態 40
圖4-2 (a)一般晶體體示意圖(b)自旋電晶體示意圖 41
圖4-3 飽和吸收體發展 42
圖4-4 與 能帶結構和不同大小樣品之參雜濃度之能隙大小變化 42
圖4-5 不同文獻中雷射打入樣品光強度與量測到的飽和強度關係圖 44
圖4-6 高低強度的碲化鉍非線性穿透量測 45
圖4-7 甩膜-共還原法示意圖 46
圖4-8 空白藍寶石基板與製備樣品 48
圖4-9 以甩膜-共還原法製備樣品之原子力顯微鏡分析圖 49
圖4-10 文獻中化學剝離法(右)機械剝離法(左)的原子力顯微鏡分析圖 49
圖4-11 利用Image j對AFM圖分析結果 50
圖4-12 (a) 400~900nm波段的穿透譜與吸收係數 50
圖4-12( b) 900~1700nm 波段的穿透譜與吸收係數 50
圖4-13 碲化鉍晶格結構與晶格震動方向示意圖 51
圖4-14文獻報導的拉曼光譜圖 51
圖4-15 量測的甩膜-共還原法所製程的碲化鉍拉曼光譜 52
圖4-16 (a)10μW~100μW open aperture(b)100μW~1mW (c)空白藍寶石基板open aperture量測 53
圖4-17 (a)5 ~70 的open aperture (b)100 ~900 的open aperture (c)1100 ~2000 的open aperture 55
圖4-18 碲化鉍在不同強度下的open aperture與Z掃描 56
圖4-19 (a)不同強度的最大穿透率差(b)不同強度open aperture中心點位移量 56
圖4-20 (a)Graphene 3-layer在新系統不同強度的open aperture (b)Graphene的最大穿透率變化與強度量測結果 (c)碲化鉍與Graphene最大穿透率變化的比較 57
圖4-21 利用公式4.1與實驗參數所擬合的圖形 58
圖4-22 碲化鉍的ARPES圖與不同時間下的結果 59
圖4-23 碲化鉍激發載子馳豫示意圖 59
圖4-24 用雙效應的open aperture 擬合公式的結果 61
圖4-25 相同強度下不同擬合公式比較圖 61
圖4-26 (a)各強度下的飽和強度(b)各強度下的雙光子吸收係數 63
圖4-27 不同強度下的Close aperture除上Open aperture的擬合 64
圖4-28 70 下的Open aperture與Close aperture 65
圖4-29 非線性折射率對強度的量測結果 65
圖 4-30 文獻中反飽和造成的非線性折射率自散交影響 65
圖4-31 文獻中利用熱透鏡擬合Z掃描Close/Open的影響 67
圖4-32 分析碲化鉍在不同強度單光子優值與雙光子優值 68
圖4-33 更高強度下Z掃描模擬結果 69
圖4-34 實驗量測結果與文獻比較 69

表次
表4-1 近年來文獻量測參數、飽和強度 與量測光強整理 43
表4-2 本實驗量測的樣品前軀體與旋轉塗佈參數 48
表4-3 第四章實驗量測實驗參數 54
表4-4 實驗使用的移動平台誤差參數 55
表4-5 各強度下的飽和強度與非線性吸收係數 60
參考文獻 References
[1] Franken, P. A., G. Weinreich, C. W. Peters and A. E. Hill (1961). "GENERATION OF OPTICAL HARMONICS." Physical Review Letters 7(4): 118-&.
[2] Kintaka, K., M. Fujimura, T. Suhara and H. Nishihara (1997). "Third harmonic generation of Nd : YAG laser light in periodically poled LiNbO3 waveguide." Electronics Letters 33(17): 1459-1461.
[3] Green, P. E. (1996). "Optical networking update." Ieee Journal on Selected Areas in Communications 14(5): 764-779.
[4] Lenz, G., J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, S. W. Cheong, J. S. Sanghera and I. D. Aggarwal (2000). "Large Kerr effect in bulk Se-based chalcogenide glasses." Optics Letters 25(4): 254-256.
[5] Samoc, A., M. Samoc, M. Woodruff and B. Lutherdavies (1995). "TUNING THE PROPERTIES OF POLY(P-PHENYLENEVINYLENE) FOR USE IN ALL-OPTICAL SWITCHING." Optics Letters 20(11): 1241-1243.
[6] Hayat, A., A. Nevet, P. Ginzburg and M. Orenstein (2011). "Applications of two-photon processes in semiconductor photonic devices: invited review." Semiconductor Science and Technology 26(8): 18.
[7] Vasilyev, S., M. Mirov and V. Gapontsev (2014). "Kerr-lens mode-locked femtosecond polycrystalline Cr2+: ZnS and Cr2+: ZnSe lasers." Optics Express 22(5): 5118-5123.
[8] Soffer, B. H. (1964). "Giant Pulse Laser Operation by a Passive, Reversibly Bleachable Absorber." Journal of Applied Physics 35(8): 2551-2551.
[9] Dr. Rüdiger Paschotta, R. P. C. G. (2015-06-05 ). "Effect of Self-phase Modulation on the Pulse Bandwidth."
[10] Desalvo, R., D. J. Hagan, M. Sheikbahae, G. Stegeman, E. W. Vanstryland and H. Vanherzeele (1992). "SELF-FOCUSING AND SELF-DEFOCUSING BY CASCADED 2ND-ORDER EFFECTS IN KTP." Optics Letters 17(1): 28-30.
[11] Osamu Aso , M. T. a. S. N. "Four-Wave Mixing in Optical Fibers and Its Applications " Furukawa Review, No. 19. 2000.
[12] J. Moran, M., C.-Y. She and R. L. Carman (1975). Interferometric measurements of the nonlinear refractive-index coefficient relative to CS2in laser-system-related materials.
[13] Sheikbahae, M., A. A. Said and E. W. Vanstryland (1989). "HIGH-SENSITIVITY, SINGLE-BEAM N2 MEASUREMENTS." Optics Letters 14(17): 955-957.
[14] Boyd, R. W. (2008). Nonlinear Optics, Third Edition, Academic Press, Inc.
[15] Tai, C. Y., J. S. Wilkinson, N. M. B. Perney, M. C. Netti, F. Cattaneo, C. E. Finlayson and J. J. Baumberg (2004). "Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation." Optics Express 12(21): 5110-5116.
[16] Shimizu, F. (1967). "FREQUENCY BROADENING IN LIQUIDS BY A SHORT LIGHT PULSE." Physical Review Letters 19(19): 1097-&.
[17] Alfano, R. R. and S. L. Shapiro (1970). "OBSERVATION OF SELF-PHASE MODULATION AND SMALL-SCALE FILAMENTS IN CRYSTALS AND GLASSES." Physical Review Letters 24(11): 592-&.
[18] Stolen, R. H. and C. Lin (1978). "SELF-PHASE-MODULATION IN SILICA OPTICAL FIBERS." Physical Review A 17(4): 1448-1453.
[19] Dmitriev, V. G., G. G. Gurzadi︠a︡n and D. N. Nikogosi︠a︡n (1991). Handbook of nonlinear optical crystals, Springer-Verlag.
[20] Wun-Long Yan, C.-K. L. (2014). "Investigation of nonlinearities of PECVD growth graphene and Ta2O5."
[21] Yariv, A. and D. M. Pepper (1977). "Amplified reflection, phase conjugation, and oscillation in degenerate four-wave mixing." Optics Letters 1(1): 16-18.
[22] Abrams, R. L. and R. C. Lind (1978). "Degenerate four-wave mixing in absorbing media." Optics Letters 2(4): 94-96.
[23] Aso, O., M. Tadakuma and S. Namiki (2000). Four-Wave Mixing in Optical Fibers and Its Applications.
[24] Zaitsu, S. I. and T. Imasaka (2015). "Continuous-wave anti-Stokes Raman laser based on phase-matched nondegenerate four-wave mixing." Optics Letters 40(1): 73-76.
[25] Friberg, S. R. and P. W. Smith (1987). "NONLINEAR OPTICAL-GLASSES FOR ULTRAFAST OPTICAL SWITCHES." Ieee Journal of Quantum Electronics 23(12): 2089-2094.
[26] Jen-Yang Huang (2017) "Wavelength Conversion with Low Operation Power in Low Loss Ta2O5 Based Micro-ring Resonator."
[27] "www.physics.ttk.pte.hufilesTAMOPFJ_Nonlinear_Optics8_measurement_of_nonlinear_refraction_and_absorption_photorefraction_optical_damage.html."
[28] Torrey, H. C., C. A. Whitmer and S. A. Goudsmit (1948). Crystal Rectifiers, McGraw-Hill Book Company.
[29] Haller, E. E. (2006). "Germanium: From its discovery to SiGe devices." Materials Science in Semiconductor Processing 9(4-5): 408-422.
[30] Washio, K. (2003). "SiGe HBT and BiCMOS technologies for optical transmission and wireless communication systems." Ieee Transactions on Electron Devices 50(3): 656-668.
[31] Ohue, E., R. Hayami, K. Oda, H. Shimamoto and K. Washio (2001). 5.3-ps ECL and 71-GHz static frequency divider in self-aligned SEG SiGe HBT. Proceedings of the 2001 BIPOLAR/BiCMOS Circuits and Technology Meeting (Cat. No.01CH37212).
[32] Ohue, E., K. Oda, R. Hayami and K. Washio (1998). A 7.7-ps CML using selective-epitaxial SiGe HBTs. Proceedings of the 1998 Bipolar/BiCMOS Circuits and Technology Meeting (Cat. No.98CH36198).
[33] Michel, J., J. Liu and L. C. Kimerling (2010). "High-performance Ge-on-Si photodetectors." Nature Photonics 4: 527.
[34] Gianlorenzo, M., S. Subal, G. Capellini, J. Witzens and G. Cary (2008). High-Speed Near Infrared Optical Receivers Based on Ge Waveguide Photodetectors Integrated in a CMOS Process.
[35] "https://chem.libretexts.org/Textbook_Maps/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Instrumental_Analysis/Spectrometer/Detectors/Detectors."
[36] Grawert, F. J., J. T. Gopinath, F. Ö. Ilday, H. M. Shen, E. P. Ippen, F. X. Kärtner, S. Akiyama, J. Liu, K. Wada and L. C. Kimerling (2005). "220-fs erbium-ytterbium:glass laser mode locked by a broadband low-loss silicon/germanium saturable absorber." Optics Letters 30(3): 329-331.
[37] Hon, N. K., R. Soref and B. Jalali (2011). "The third-order nonlinear optical coefficients of Si, Ge, and Si1−xGex in the midwave and longwave infrared." Journal of Applied Physics 110(1): 011301.
[38] Zhang, F., Z. P. Wang, D. L. Wang, Z. X. Wu, S. L. Wang and X. G. Xu (2016). "Nonlinear optical effects in nitrogen-doped graphene." Rsc Advances 6(5): 3526-3531.
[39] Morgan, D. J. and J. A. Galloway (1967). "ENERGY BAND STRUCTURE OF GERMANIUM." Physica Status Solidi 22(2): 491-&.
[40] Zhang, H., S. Virally, Q. L. Bao, L. K. Ping, S. Massar, N. Godbout and P. Kockaert (2012). "Z-scan measurement of the nonlinear refractive index of graphene." Optics Letters 37(11): 1856-1858.
[41] Kumar, S., M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, A. K. Sood and C. N. R. Rao (2009). "Femtosecond carrier dynamics and saturable absorption in graphene suspensions." Applied Physics Letters 95(19): 3.
[42] "http://www.kau.edu.sa/getfile.aspx?id=106563&fn=linear."
[43] "www.ioffe.ruSVANSMSemicondSiCbandstr.html."
[44] Kolobov, A. V. (2000). "Raman scattering from Ge nanostructures grown on Si substrates: Power and limitations." Journal of Applied Physics 87(6): 2926-2930.
[45] Andreev, B. A., L. V. Gavrilenko, Y. N. Drozdov, P. A. Yunin, D. A. Pryakhin, L. A. Mochalov, P. G. Sennikov, P. Bulkin and P. Roca i Cabarrocas (2014). "Raman spectra of amorphous isotope-enriched 74Ge with low-strained Ge nanocrystals." Thin Solid Films 552: 46-49.
[46] Ou, H., Y. Ou, C. Liu, R. W. Berg and K. Rottwitt (2011). "Formation and characterization of varied size germanium nanocrystals by electron microscopy, Raman spectroscopy, and photoluminescence." Optical Materials Express 1(4): 643-651.
[47] Qi, X., Zhai, G., Liang, J., Ma, S., Liu, X., & Xu, B. (2014). "Preparation and characterization of SiC@ CNT coaxial nanocables using CNTs as a template." CrystEngComm, 16(41), 9697-9703.
[48] Van Stryland, E. W., Woodall, M. A., Vanherzeele, H., & Soileau, M. J. (1985). Energy band-gap dependence of two-photon absorption. Optics letters, 10(10), 490-492.
[49] 邓晓旭,张学如,刘树田,李淳飞 (1998)"几种非线性吸收产生条件的理论分析"
[50] Miao, L., J. Yi, Q. Wang, D. Feng, H. He, S. Lu, C. Zhao, H. Zhang and S. Wen (2016). "Broadband third order nonlinear optical responses of bismuth telluride nanosheets." Optical Materials Express 6(7): 2244-2251.
[51] Fu, L. and C. L. Kane (2007). "Topological insulators with inversion symmetry." Physical Review B 76(4): 045302.
[52] Qi, X. L. and S. C. Zhang (2010). "The quantum spin Hall effect and topological insulators." Physics Today 63(1): 33-38.
[53] Day, C. (2008). "Quantum spin Hall effect shows up in a quantum well insulator, just as predicted." Physics Today 61(1): 19-+.
[54] Tong, D. (2016). "The Quantum Hall Effect."
[55] Chen, Y. L., J. H. Chu, J. G. Analytis, Z. K. Liu, K. Igarashi, H. H. Kuo, X. L. Qi, S. K. Mo, R. G. Moore, D. H. Lu, M. Hashimoto, T. Sasagawa, S. C. Zhang, I. R. Fisher, Z. Hussain and Z. X. Shen (2010). "Massive Dirac Fermion on the Surface of a Magnetically Doped Topological Insulator." Science 329(5992): 659-662.
[56] Qi, X. L. and S. C. Zhang (2011). "Topological insulators and superconductors." Reviews of Modern Physics 83(4): 54.
[57] Moore, J. E. (2010). "The birth of topological insulators." Nature 464(7286): 194-198.
[58] Kong, D. S., W. H. Dang, J. J. Cha, H. Li, S. Meister, H. L. Peng, Z. F. Liu and Y. Cui (2010). "Few-Layer Nanoplates of Bi2Se3 and Bi2Te3 with Highly Tunable Chemical Potential." Nano Letters 10(6): 2245-2250.
[59] 張泰榕 (2017). "拓樸材料與拓樸能帶理論." 台灣物理學會-物理雙月刊.
[60] Bernard, F., H. Zhang, S.-P. Gorza and P. Emplit (2012). Towards mode-locked fiber laser using topological insulators. Advanced Photonics Congress, Colorado Springs, Colorado, Optical Society of America.
[61] Wu, D. D., Z. P. Cai, Y. L. Zhong, J. Peng, J. Weng, Z. Q. Luo, N. Chen and H. Y. Xu (2015). "635-nm Visible Pr3+-Doped ZBLAN Fiber Lasers Q-Switched by Topological Insulators SAs." Ieee Photonics Technology Letters 27(22): 2379-2382.
[62] "拓扑绝缘体与量子反常霍尔效应." 科学通报 59(35): 3431.
[63] Zhao, C., H. Zhang, X. Qi, Y. Chen, Z. Wang, S. Wen and D. Tang (2012). "Ultra-short pulse generation by a topological insulator based saturable absorber." Applied Physics Letters 101(21): 211106.
[64] Kane, C. L. and E. J. Mele (2005). "Quantum spin Hall effect in graphene." Physical Review Letters 95(22): 4.
[65] Ryu, B., B. S. Kim, J. E. Lee, S. J. Joo, B. K. Min, H. Lee, S. Park and M. W. Oh (2016). "Prediction of the band structures of Bi2Te3-related binary and Sb/Se-doped ternary thermoelectric materials." Journal of the Korean Physical Society 68(1): 115-120.
[66] Woodward, R. I. and E. J. R. Kelleher (2015). "2D Saturable Absorbers for Fibre Lasers." Applied Sciences-Basel 5(4): 1440-1456.
[67] Chen, S., C. Zhao, Y. Li, H. Huang, S. Lu, H. Zhang and S. Wen (2014). "Broadband optical and microwave nonlinear response in topological insulator." Optical Materials Express 4(4): 587-596.
[68] Li, P. X., G. J. Zhang, H. Zhang, C. J. Zhao, J. J. Chi, Z. Q. Zhao, C. Yang, H. W. Hu and Y. F. Yao (2014). "Q-Switched Mode-Locked Nd:YVO4 Laser by Topological Insulator Bi2Te3 Saturable Absorber." Ieee Photonics Technology Letters 26(19): 1912-1915.
[69] Sun, Y.-J., C.-K. Lee, J.-L. Xu, Z.-J. Zhu, Y.-Q. Wang, S.-F. Gao, H.-P. Xia, Z.-Y. You and C.-Y. Tu (2015). "Passively Q-switched tri-wavelength Yb3+:GdAl3(BO3)4 solid-state laser with topological insulator Bi2Te3 as saturable absorber." Photonics Research 3(3): A97-A101.
[70] Xu, J.-L., Y.-J. Sun, J.-L. He, Y. Wang, Z.-J. Zhu, Z.-Y. You, J.-F. Li, M. M. C. Chou, C.-K. Lee and C.-Y. Tu (2015). "Ultrasensitive nonlinear absorption response of large-size topological insulator and application in low-threshold bulk pulsed lasers." Scientific Reports 5: 14856.
[71] Yan, P. G., R. Y. Lin, H. Chen, H. Zhang, A. J. Liu, H. P. Yang and S. C. Ruan (2015). "Topological Insulator Solution Filled in Photonic Crystal Fiber for Passive Mode-Locked Fiber Laser." Ieee Photonics Technology Letters 27(3): 264-267.
[72] Lin, Y. Y., P. Lee, J. L. Xu, C. L. Wu, C. M. Chou, C. Y. Tu, M. M. C. Chou and C. K. Lee (2016). "High-Pulse-Energy Topological Insulator Bi2Te3-Based Passive Q-Switched Solid-State Laser." Ieee Photonics Journal 8(4): 10.
[73] Liu, X., K. Yang, S. Zhao, T. Li, W. Qiao, H. Zhang, B. Zhang, J. He, J. Bian, L. Zheng, L. Su and J. Xu (2017). "High-power passively Q-switched all-solid-state laser based on a Bi2Te3 saturable absorber." Photonics Research 5(5): 461-466.
[74] Peng, L. (2017). "Preparation of Topological Insulator Bi2Te3 Films by Spin Coating-Coreduction Approach(SCCA)and Laser Test."
[75] Tang, P. (2013). Topological Insulator: Bi2Te3 Saturable Absorber for the Passive Q-Switching Operation of an in-Band Pumped 1645-nm Er:YAG Ceramic Laser.
[76] Qiao, J., Zhao, S., Yang, K., Song, W. H., Qiao, W., Wu, C. L., ... & Liu, H. (2018). High-quality 2-μm Q-switched pulsed solid-state lasers using spin-coating-coreduction approach synthesized Bi2Te3 topological insulators. Photonics Research, 6(4), 314-320.
[77] Zhao, Y., H. Liu, H. M. Qin, X. J. Chu, X. S. Wang, X. Wang, K. F. Cai, D. Liu, C. L. Wang and J. Y. Wang (2011). "Spin coating-Co-reduction approach: A general strategy for preparation of oriented chalcogenide thin film on arbitrary substrates." Rare Metals 30: 651-656.
[78] Shahil, K. M. F., M. Z. Hossain, V. Goyal and A. A. Balandin (2012). "Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials." Journal of Applied Physics 111(5): 054305.
[79] Yuan, J., M. Zhao, W. Yu, Y. Lu, C. Chen, M. Xu, S. Li, K. P. Loh and Q. Bao (2015). "Raman Spectroscopy of Two-Dimensional Bi(2)Te(x)Se(3 − x) Platelets Produced by Solvothermal Method." Materials 8(8): 5007-5017.
[80] Shahil, K. M. F., Hossain, M. Z., Goyal, V., & Balandin, A. A. (2012). Micro-Raman spectroscopy of mechanically exfoliated few-quintuple layers of Bi2Te3, Bi2Se3, and Sb2Te3 materials. Journal of Applied Physics, 111(5), 054305.
[81] Hajlaoui, M., E. Papalazarou, J. Mauchain, Z. Jiang, I. Miotkowski, Y. P. Chen, A. Taleb-Ibrahimi, L. Perfetti and M. Marsi (2013). "Time resolved ultrafast ARPES for the study of topological insulators: The case of Bi2Te3." European Physical Journal-Special Topics 222(5): 1271-1275.
[82] Sobota, J. A., S. Yang, J. G. Analytis, Y. L. Chen, I. R. Fisher, P. S. Kirchmann and Z. X. Shen (2012). "Ultrafast Optical Excitation of a Persistent Surface-State Population in the Topological Insulator " Physical Review Letters 108(11): 117403.
[83] Wang, K., H. Long, M. Fu, G. Yang and P. Lu (2010). "Intensity-dependent reversal of nonlinearity sign in a gold nanoparticle array." Optics Letters 35(10): 1560-1562.
[84] Falconieri, M. (1999). Thermo-optical effects in Z-scan measurements using high-repetition-rate lasers. Journal of Optics A: Pure and Applied Optics, 1(6), 662.
[85] Gnoli, A., Razzari, L., & Righini, M. (2005). Z-scan measurements using high repetition rate lasers: how to manage thermal effects. Optics express, 13(20), 7976-7981.
[86] Cheng, C. H., Lin, Y. H., Chen, T. H., Chen, H. Y., Chi, Y. C., Lee, C. K., ... & Lin, G. R. (2015). Can silicon carbide serve as a saturable absorber for passive mode-locked fiber lasers?. Scientific reports, 5, 16463.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code