Responsive image
博碩士論文 etd-0804105-141322 詳細資訊
Title page for etd-0804105-141322
論文名稱
Title
DA TYPE FUZZY PID之焚化爐燃燒控制
Combustion Control of Refuse Incineration Plant by DA Type Fuzzy PID Controller
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-01
繳交日期
Date of Submission
2005-08-04
關鍵字
Keywords
模糊、焚化爐、模糊PID
INCINERATOR, FUZZY PID, FUZZY
統計
Statistics
本論文已被瀏覽 5708 次,被下載 4966
The thesis/dissertation has been browsed 5708 times, has been downloaded 4966 times.
中文摘要
對於焚化爐之運轉操作而言,其最大之困難在於垃圾性質的不穩定與不確定性;複雜的垃圾成分使得傳統控制方式不易獲得穩定之燃燒條件與蒸汽流量,因此須尋求新的控制方法以適應焚化爐之燃燒特性。基於相關文獻研究顯示[2],採用模糊控制理論之焚化爐燃燒控制能提供良好之燃燒條件與穩定之蒸汽流量,並有效減少人員介入操作之頻率。 有別於規則式之模糊理論,直接作用式模糊比例-積分-微分控制理論(Direct Action type Fuzzy PID),乃透過單一輸入變數與三段式模糊推理系統,並結合傳統PID控制器所組成,使得直接作用式模糊PID控制器具有簡單之結構以及非線性輸出之特性。 本研究之對象為逆輒式焚化爐,其模型之建立係以垃圾熱值與蒸汽量之統計值,配合爐體實際結構推導出進料器變速度模型;系統之建立與模擬均在MATLAB環境下進行,控制器之調校則採用基因演算法作為最佳化之方法;最後,將受控模型與控制器結合並模擬,以驗證直接作用式模糊PID控制器運用在焚化爐燃燒控制上,具有良好之性能與高度之可行性。
Abstract
For the operation of refuse incineration plant, the major difficulties with trash are the unstable nature and the uncertainty. The complexity of trash ingredient causes the traditional control method fail to obtain a stable combustion condition and steam flow rate. It is necessary to seek a new control method to adapt to the volatile combustion features of refuse incinerator. Based on correlation literature research [2], the fuzzy control theory is proposed to provide a good combustion condition to stabilize the steam flow rate for the combustion control of refuse furnace, and effectively reduce the rate of personnel involvement. Different from the rule based fuzzy theory, the Direct Action type Fuzzy Proportion-Integral-Differential control theory (Direct Action type Fuzzy PID) is designed to combine a single input variable and three-rule fuzzy inference system. With a traditional PID controller, the DA type Fuzzy PID controller will have a simple structure as well as the nonlinear output property.
Object of control is a reverse-acting grate type incinerator. Establishment of the model is done with estimates of the value of LHV and steam flow rate, coordinating the actual structure of furnace to infer the speed variable feeder model. Establishment and simulation of the control system works under the MATLAB environment. Parameter-tuning of the controller uses the Genetic Algorithm (GA) for optimization. By joining the furnace model and the controller for simulation, it proves that the Direct Action type Fuzzy PID controller has good performance and is feasible to the combustion control for refuse incineration plant.
目次 Table of Contents
目 錄
中文摘要……………………………………………………………Ⅰ
英文摘要 …………………………………………………………Ⅱ
圖目錄 ……………………………………………………………Ⅶ
表目錄 ……………………………………………………………Ⅸ
第一章 序論
1.1 前言 ………………………………………………………1

1.2 文獻回顧 ……………………………………………………2

1.2.1 模糊邏輯(Fuzzy Logical)概述 ………………………2

1.2.2 模糊邏輯之焚化爐燃燒控制 ……………………………10

1.3 目的與方法 …………………………………………………13

1.3.1 研究之目的 ………………………………………………13

1.3.2 研究之方法 ………………………………………………14

1.4 論文架構 ……………………………………………………14

第二章 垃圾焚化系統

2.1 系統簡介 ……………………………………………………15

2.2 系統流程 ……………………………………………………18

2.3 影響焚化爐操作之參數 ……………………………………21

2.4 本章結論 ……………………………………………………24

第三章 燃燒控制

3.1 燃燒 ………………………………………………………25

3.1.1 都市固體廢棄物 …………………………………………25

3.1.2 焚化基本原理 ……………………………………………28

3.2 爐床系統 ……………………………………………………29

3.2.1 系統特性 …………………………………………………29

3.2.2 系統架構 …………………………………………………31

3.3 控制邏輯 ……………………………………………………31

3.3.1 燃燒控制基本概念 ………………………………………31

3.3.2 現行控制系統組成 ………………………………………32

3.3.3 手動操作 …………………………………………………34

3.4 質能平衡計算 ………………………………………………36

3.4.1 質量平衡 …………………………………………………36

3.4.2 能量平衡 …………………………………………………37

3.4.3 垃圾推入量之估算 ………………………………………38

3.5 受控模型 ……………………………………………………40

3.5.1 定速度模型 ………………………………………………40

3.5.2 變速度模型 ………………………………………………40

3.5.3 受控模型建立 ……………………………………………41

3.6 本章結論 ……………………………………………………43

第四章 Fuzzy PID控制器

4.1 前言 …………………………………………………………44

4.2 DA Type Fuzzy PID Controller …………………………45

4.2.1 Fuzzy PID 之架構 ………………………………………45

4.2.2 單輸入變數Fuzzy PID……………………………………50

4.2.3 輸出特性曲線之選取 ……………………………………57

4.3 模糊輸出特性 ………………………………………………59

4.3.1 輸出特性 …………………………………………………59

4.3.2 模糊PID與傳統PID控制器之比較 ……………………60

4.4 本章結論 ……………………………………………………60

第五章 模擬與測試

5.1 控制參數之調校 ……………………………………………61

5.1.1 調校參數 …………………………………………………61

5.1.2 基因演算法 ………………………………………………62

5.1.3 適應函數 …………………………………………………65

5.2 系統連結與測試 ……………………………………………66

5.2.1 控制器測試 ………………………………………………66

5.2.2 系統測試 …………………………………………………70

5.3 本章結論 ……………………………………………………72

第六章 結論與未來研究方向

6.1 結論 …………………………………………………………74

6.1.1 關於受控體 ………………………………………………74

6.1.2 關於控制器部分 ………………………………………75

6.1.3 關於參數調校 ……………………………………………75

6.2 文來研究方向 ………………………………………………76

6.2.1 受控體 …………………………………………………76

6.2.2 控制器 …………………………………………………76

6.2.3 參數調校 …………………………………………………77

參考文獻 …………………………………………………………78

圖目錄

圖1-1 周圍溫度的語言定義 …………………………………………4

圖1-2 模糊邏輯之規則運算 …………………………………………6

圖1-3 模糊控制器結構一 ……………………………………………8

圖1-4 模糊控制器結構二 ……………………………………………9

圖1-5 模糊控制器結構三 ……………………………………………9

圖1-6 模糊控制器結構四 ……………………………………………9

圖2-1 系統方塊圖 …………………………………………………16

圖2-2 系統簡圖 ……………………………………………………17

圖2-3 焚化爐爐體示意圖 …………………………………………22

圖3-1 逆輒式爐床結構示意圖 ……………………………………30

圖3-2 爐條運動示意圖 ……………………………………………30

圖3-3 進料器與爐床之作動與蒸汽流量之關係 …………………33

圖3-4 系統熱平衡圖 ………………………………………………36

圖3-5 進料器結構 …………………………………………………39

圖3-6 進料器模型 …………………………………………………42

圖3-7 進料器模擬測試 ……………………………………………43

圖4-1 Fuzzy PID 控制器與製程之典型結構 ……………………45

圖4-2 單輸入變數結構 ……………………………………………45

圖4-3 雙輸入變數結構 ……………………………………………45

圖4-4 三輸入變數結構 ……………………………………………46

圖4-5 單輸入變數單規則庫 Fuzzy PID …………………………48

圖4-6 單輸入變數三規則庫 Fuzzy PID …………………………49

圖4-7 雙輸入變數耦合規則庫 Fuzzy PID ………………………49

圖4-8 雙輸入變數解耦合規則庫 Fuzzy PID ……………………49

圖4-9 三輸入變數偶合規則庫 Fuzzy PID ………………………50

圖4-10 三輸入變數解偶合規則庫 Fuzzy PID ……………………50

圖4-11 加入取樣時間之單輸入變數單規則庫Fuzzy PID結構 …50

圖4-12 三角歸屬函數 ………………………………………………51

圖4-13 分段區間 ……………………………………………………52

圖4-14 模糊推理 ……………………………………………………54

圖4-15 x1,x2之範圍…………………………………………………55

圖4-16 非重疊之輸出函數圖 ………………………………………55

圖4-17 重疊之輸出函數圖 …………………………………………56

圖4-18 輸出曲線輪廓 ………………………………………………57

圖4-19 (Xed,ed)移動之範圍 ………………………………………58

圖5-1 控制方塊圖 …………………………………………………61

圖5-2 步階響應 ……………………………………………………62

圖5-3 基因演算法流程圖 …………………………………………63

圖5-4 一階模型之步階響應 ………………………………………67

圖5-5 二階模型之步階響應 ………………………………………68

圖5-6 非線性模型之步階響應 ……………………………………69

圖5-7 系統模擬模組 ………………………………………………70

圖5-8 系統響應一 …………………………………………………71

圖5-9 系統響應二 …………………………………………………71

圖5-10 系統響應三 …………………………………………………72

表目錄

表1-1 加總運算子 ……………………………………………………6

表1-2 規則表範例 ……………………………………………………8

表3-1 都市固體廢棄物之組成百分比 ……………………………26

表3-2 化學計量需氧量 ……………………………………………29

表3-3 垃圾性質與衝程長度 ………………………………………33

表5-1 一階模型控制參數 …………………………………………67

表5-2 二階模型控制參數 …………………………………………68

表5-3 非線性模型控制參數 ………………………………………69

表5-4 系統模型控制參數 …………………………………………70
參考文獻 References
[1]S. Erbay, “An Overview of Fuzzy Logic," RTP Corp.
[2]H. ONO, T.OHNISHI and Y. TERADA, “Combustion Control of Refuse Incineration Plant by Fuzzy Logic," Fuzzy Sets and Sys., vol.32, pp.193-206, March 1989.
[3]章裕民,“焚化處理技術,"文京圖書公司,2000年1月
[4]張一岑,“有害廢棄物焚化技術,"工程科技叢書,1995年4月
[5]“高雄市政府環境保護局南區資源回收廠技術手冊,"德國馬丁公司 & 日本三菱公司, 1999.
[6]K. I. Mann, B.-G. Hu, “Analysis of Direct Action Fuzzy PID Controller Structure," IEEE Trans. Fuzzy Sys., Man, Cyber., vol.29, OCTOBER 1999.
[7]W. Li, “Design of a Hybrid Fuzzy Logic Proportional Plus Conventional Integral-Derivative controller," IEEE Trans. Fuzzy Sys., vol.6, NO.4, NOVEMBER 1998.
[8] M. NAKAMURA AND N. J. THEMELIS, “Modeling of Solid Waste Flow and Mixing on the Traveling Grate of a Waste-to-energy Combustion Chamber," Proceedings of 2003 ASME IMECE, November 16-21, 2003.
[9]C. Ryu, D. Shin and S. Choi, “Combined Simulation of Combustion and Gas Flow in a Grate-Type Incinerator," Air & Waste Man. assoc., vol.52, pp.174-185, 2002.
[10] Baogang Hu, K. I. Mann, and G. Gosine, “New Methodology for Analytical and Optimal Design of Fuzzy PID Controller," IEEE Trans. Fuzzy Sys., vol.7, NO.5, JUNE 1999.
[11] B.-G. Hu, “A Systematic Study of Fuzzy PID Controllers function -function-Based Evaluation Approach," IEEE Trans. Fuzzy Sys., vol.9, NO.5, OCTOBER 2001.
[12]A. Malki, “New Design and Stability Analysis of fuzzy Proportional–Derivative Control System," IEEE Trans. Fuzzy Sys., vol.2 NO.4, NOVEMBER 1994.
[13]D. Misir, H. A. Malki, G. Chen, “Design and analysis of a proportional-integral-derivative controller," Fuzzy Sets and sys., vol.79,pp.297-314,1996.
[14]M. Leskens, L.B.M. Van Lessel, P.M.J. Van den Hof, “MIMO closed-loop identification of an MSW incinerator," Control Eng. Practice, vol.10,pp.315-326, 2002.
[15]W. Li and X. Chang, “Application of hybrid fuzzy logic proportional plus conventional integral-derivative controller to combustion control of stoker-fired boilers," Fuzzy Sets and Sys., vol.111, pp.267-284, 2000.
[16]C. Ryu, D. Shin and S. Choi, “Effect of fuel layer mixing in waste bed combustion," Adv. in Environ. Res. vol.5,pp.259-267, 2001.
[17]B.-G. Hu, G. K. I. Mann and R. G. Gosine, “Control Curve Design for Nonlinear (or Fuzzy) Proportional actions Using Spline-Based Functions," Automatica, vol.34,pp.1125-1133, 1998.
[18]周鵬程,“MATLAB程式語言入門,"全華科技圖書公司,2004年3月
[19]Working Group on Prime Mover and Energy Supply Models for System Dynamic Performance Studies, “Dynamic Models for Fossil Fueled System Units in Power System Studies," IEEE Trans. Power Sys., vol. 6, NO.2, May 1991.
[20]周鵬程,“遺傳演算法原理與應用,"全華科技圖書公司,2005年3月
[21]R. C. Dorf and R. H. Bishop, “Modern control System," ADDISON-WESLEY PUBLISHING COMPANY, 1995.
[22]E. H. Mamdani and S. Assilian, “An Experiment in Linguistic Synthesis with a Fuzzy Logic Controller," Int. J. Man-Mach. studies, vol.7, pp.1-13, 1975.
[23]W. C. Chen, Ni-Bin Chang and “GA-based fuzzy neural controller design for municipal incinerators," Fuzzy Seta and sys., vol.129,pp.343-369, 2002.
[24]J. Jantzen, “Tuning of Fuzzy PID Controllers," Tech. rep. of Technical University of Denmark, NO.98-H 871, SEPTEMBER 1998.
[25]Y. Miyamoto, Y. Kurosaki, H. Fujiyama and E. Nanbu, “Dynamic characteristic analysis and combustion control for a fluidized bed incinerator," ctrl. eng. Practice, vol.6,pp.1159-1168, 1998.
[26]S. Galichet and L. Foulloy, “Fuzzy Controllers: Synthesis and Equivalences," IEEE Tran. Fuzzy Sys., vol.3, NO.2, MAY 1995.
[27]J.-H. Chiang and P.-Y. Hao, “Support Vector Learning Mechanism for Fuzzy Rule-Based Modeling: A New Approach," IEEE Tran. Fuzzy Sys., vol.12, NO.1, FEBURUARY 2004.
[28]M. L. Hadjili and V. Wertz, “Takagi-Sugeno Fuzzy Modeling Incorporating Input Variables Selection," IEEE Trans. Fuzzy Sys., vol.10,NO.6, December 2002.
[29]R.-E. Precup and S. Preitl, “Optimization criteria in development of fuzzy controllers with dynamics," Eng. App. of Artificial Intelligence., vol.17,pp.661-674, 2004.
[30]A. W. Ordys, “Modelling and Simulation of Power Generation Plants (Advances in Industrial Control)," Springer-Verlag Telos, June 1, 1994.
[31]楊綸標,高英儀,“模糊數學原理與應用,"華南理工大學出版社,2001年3月
[32]劉增良,“模糊技術與應用選編,"北京航空航天大學出版社,1997年2月
[33]洪文哲,“應用UPFC於電力系統最佳化壅塞管理之研究,"中山大學2004年6月
[34]K.-C. Leea, S. Leea, and H.-H. Leeb, “Implementation and PID tuning of network-based control systems via Profibus polling network," Computer Standards & Interfaces, vol.26 pp.229–240, 2004.
[35]T.-H. S. Li and M.-Y. Shieh, “Design of a GA-based fuzzy PID controller for non-minimum phase systems," Fuzzy Sets and Sys., vol.111, pp.183-197, 2000.
[36]Alen VarSek, Tanja Urbantit, and Bodgan Filipit, “Genetic Algorithms in Controller Design and Tuning," IEEE Tran. Sys., Man. And Cyber., vol.23, NO.5. SEPTEMBER/OCTOBER 1993.
[37]K. Görner, “Waste Incineration European State of the Art and New Developments," University of Essen.
[38]吳駖,“MATLAB 6.X 與自動控制基礎,"文魁資訊有限公司,2002年7月 80
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code