Responsive image
博碩士論文 etd-0804105-144104 詳細資訊
Title page for etd-0804105-144104
論文名稱
Title
受外界機械應力下金氧半場效電晶體之可靠度研究與電性分析
Investigation on Reliability and Electrical Analysis of MOSFETs under External Mechanical Stress
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
87
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-20
繳交日期
Date of Submission
2005-08-04
關鍵字
Keywords
機械應力、金氧半場效電晶體、應變矽
mechanical stress, MOSFETs, strained silicon
統計
Statistics
本論文已被瀏覽 5675 次,被下載 0
The thesis/dissertation has been browsed 5675 times, has been downloaded 0 times.
中文摘要
現今的半導體製程技術已正式跨進奈米領域,隨著尺寸不斷微縮,面積相同的晶片卻擁有更多的電晶體數量,進而提昇其工作頻率及性能。但微影技術已經接近瓶頸,所以我們必須另外尋找能夠提升電晶體效能的方法,應變矽就是目前的研究重心。在此論文裡,我們深入探討當N型與P型金氧半場效電晶體的通道受到應變時,其電性特性與可靠度分析。
為了讓通道產生應變,我們選擇利用外界機械應力來彎曲矽基板,此時通道將受到單軸張應力而產生應變。利用此方法,我們成功提高NMOS的汲極電流與載子遷移率,提升幅度分別為12%與6%。在PMOS方面,則無任何改變量。
另外,在可靠度分析方面,藉由1000秒的DC Stress,我們可以瞭解熱載子效應對應變矽的影響。在實驗結果中,NMOS與PMOS都得到同一個現象,就是當矽基板彎曲的曲率越大時,可靠度越差。
Abstract
Semiconductor technology has already got into nanometer scale. As the dimension keeping scale down, we can get more transistor in the same area, and furthermore the frequency and performance are also enhanced. But nowadays the development of the lithography technology has come to the neck, we must find the other way to improve the performance of transistor. In this study, the strained silicon effect and reliability of CMOS are fully discussed.
In order to get strain from the channel, silicon substrate is bent by applying external mechanical stress, the lattice of channel will have strain due to uniaxial tensile stress. By this way, we successfully improve drain current and mobility of NMOS into 12% and 6%, respectively. But there is no variation for PMOS.
In addition, by DC stress, we can understand the hot carrier effect to strained silicon. In this work, both NMOS and PMOS present the same result, this is, as the silicon substrate is bent, the sharper of the curve, the worse of the reliability.
目次 Table of Contents
目錄.....................................................Ⅰ
圖目錄...................................................Ⅳ
表目錄...................................................Ⅸ
中文摘要.................................................Ⅹ
英文摘要.............................................. ⅩⅠ

第一章 緒論

1-1. 半導體元件的基礎結構...............................1
1-2. 研究動機...........................................3
1-3. 文獻回顧...........................................4
1-4. 本文結構...........................................7

第二章 理論基礎

2-1. 氮化矽應力層.......................................8
2-1-1. 氮化矽應力層形成原理..........................8
2-1-2. 氮化矽薄膜的量測方式.........................11
2-1-3. 張力應變對矽之電子特性的影響.................13
2-2. 金氧半場效電晶體..................................15
2-2-1. 概述.........................................15
2-2-1. 基本元件特性.................................17
2-2-3. 線性區與飽和區...............................19
2-3. 拉曼光譜分析......................................20
2-3-1. 概述.........................................20
2-3-2. 拉曼散射機制.................................21
2-3-3. 拉曼光譜的測定方法...........................23

第三章 實驗儀器與參數粹取

3-1. 實驗步驟..........................................24
3-1-1. 實驗前準備...................................24
3-1-2. Sample研磨...................................24
3-1-3. 量測設定.....................................25
3-2. 參數萃取..........................................27
3-3. 實驗儀器..........................................29
3-3-1. 研磨機台.....................................29
3-3-2. 量測機台.....................................30

第四章 結果與討論

4-1. 氮化矽薄膜對電性的影響............................32
4-2. 機械研磨的影響....................................37
4-3. 彎曲對電性的影響..................................38
4-4. 可靠度分析........................................48
4-5. 拉曼光譜分析結果..................................62
4-6. 低溫量測..........................................62

第五章 結論與未來展望

5-1. 結論..............................................67
5-2. 未來展望..........................................68

參考文獻.................................................70

表目錄
表4-1 有無氮化矽應力層對NMOS(W=10μm、L=80nm)之參數比較表................................................34
表4-2 NMOS(W=10μm、L=1μm)基板於彎曲前後之參數比較表....43
表4-3 NMOS(W=10μm、L=0.1μm)基板於彎曲前後之參數比較表..43














圖目錄
圖1-1基礎元件結構........................................2
圖2-1當氮化矽沈積於矽基板上,不同的薄膜應力會對外觀造成影響.................................................10
圖2-2氮化矽應力層中矽與氮原子的個數比與殘留應力之關係...11
圖2-3 Si3N4作用於電晶體之示意圖...........................12
圖2-4 Intel於2004發表的應變矽結構.......................13
圖2-5(001)面上二重與四重簡併態的電子特性...............14
圖2-6積體電路的複雜性對年代演進之關係...................16
圖2-7積體電路的最小元件尺寸隨年代變化情形...............16
圖2-8 MOSFET透試圖......................................18
圖2-9 MOSFET操作方式及其輸出特性的I-V特性..............19
圖2-10拉曼散射的機制....................................22
圖3-1研磨機.............................................29
圖3-2量測平台...........................................30
圖3-3量測機台...........................................30
圖3-4溫控器與燈光控制機.................................31
圖4-1有無氮化矽應力層對NMOS(W=10μm、L=1μm)之VD-ID曲線.................................................32
圖4-2有無氮化矽應力層對NMOS(W=10μm、L=80nm)之VD-ID曲線.................................................33
圖4-3有無氮化矽應力層對NMOS(W=10μm、L=80nm)之VG-gm曲線.................................................33
圖4-4有無氮化矽應力層對NMOS(W=10μm、L=80nm)之飽和區VG-NID曲線...............................................34
圖4-5有無氮化矽應力層對PMOS(W=10μm、L=1μm)之VD-ID曲線.................................................35
圖4-6有無氮化矽應力層對PMOS(W=10μm、L=80nm)之VD-ID曲線.................................................36
圖4-7有無氮化矽應力層對PMOS(W=10μm、L=80nm)之VG-gm曲線.................................................36
圖4-8 NMOS於研磨前後之比較..............................37
圖4-9 PMOS於研磨前後之比較..............................38
圖4-10不同曲率半徑之模具................................39
圖4-11基板彎曲(R=20mm)對NMOS(W=10μm、L=1μm)之VD-ID曲線................................................39
圖4-12基板彎曲(R=20mm)對NMOS(W=10μm、L=0.1μm)之VD-ID曲線..............................................40
圖4-13基板彎曲(R=20mm)對NMOS(W=10μm、L=1μm)之VG-gm曲線................................................41
圖4-14基板彎曲(R=20mm)對NMOS(W=10μm、L=0.1μm)之VG-gm曲線..............................................41
圖4-15基板彎曲(R=20mm)對NMOS(W=10μm、L=1μm)之飽和區VG-NID曲線.........................................42
圖4-16基板彎曲(R=20mm)對NMOS(W=10μm、L=0.1μm)之飽和區VG-NID曲線......................................42
圖4-17基板彎曲(R=20mm)對PMOS(W=10μm、L=1μm)之VD-ID曲線................................................44
圖4-18基板彎曲(R=20mm)對PMOS(W=10μm、L=0.1μm)之VD-ID曲線..............................................44
圖4-19基板彎曲(R=50mm)對NMOS(W=10μm、L=1μm)之VD-ID曲線................................................45
圖4-20基板彎曲(R=50mm)對NMOS(W=10μm、L=1μm)之VG-gm曲線................................................46
圖4-21基板彎曲(R=50mm)對NMOS(W=10μm、L=1μm)之飽和區VG-NID曲線.........................................46
圖4-22基板彎曲(R=50mm)對PMOS(W=10μm、L=1μm)之VD-ID曲線................................................47
圖4-23載子遷移率變化量與曲率半徑的關係..................47
圖4-24汲極電流變化量與曲率半徑的關係....................48
圖4-25 NMOS的熱載子效應.................................49
圖4-26 PMOS的熱載子效應.................................49
圖4-27 NMOS(W=10μm、L=1μm)於DC Stress 0s~1000s之線性區VG-NID曲線......................................50
圖4-28 NMOS(W=10μm、L=1μm)於DC Stress 0s~1000s之飽和區VG-NID曲線......................................50
圖4-29載子遷移率隨DC Stress時間變化曲線................51
圖4-30 NMOS基板黏於R=20mm模具上之線性區VG-NID曲線.....52
圖4-31 NMOS基板黏於R=20mm模具上之飽和區VG-NID曲線.....52
圖4-32 NMOS基板黏於R=30mm模具上之線性區VG-NID曲線.....53
圖4-33 NMOS基板黏於R=30mm模具上之飽和區VG-NID曲線.....53
圖4-34 NMOS基板黏於R=40mm模具上之線性區VG-NID曲線.....54
圖4-35 NMOS基板黏於R=40mm模具上之飽和區VG-NID曲線.....54
圖4-36 NMOS基板黏於R=50mm模具上之線性區VG-NID曲線.....55
圖4-37 NMOS基板黏於R=50mm模具上之飽和區VG-NID曲線.....55
圖4-38 PMOS(W=10μm、L=1μm)於DC Stress 0s~1000s之線性區VG-NID曲線......................................56
圖4-39 PMOS(W=10μm、L=1μm)於DC Stress 0s~1000s之飽和區VG-NID曲線......................................57
圖4-40 PMOS基板黏於R=20mm模具上之線性區VG-NID曲線......57
圖4-41 PMOS基板黏於R=20mm模具上之飽和區VG-NID曲線......58
圖4-42 PMOS基板黏於R=30mm模具上之線性區VG-NID曲線......58
圖4-43 PMOS基板黏於R=30mm模具上之飽和區VG-NID曲線......59
圖4-44 PMOS基板黏於R=40mm模具上之線性區VG-NID曲線......59
圖4-45 PMOS基板黏於R=40mm模具上之飽和區VG-NID曲線......60
圖4-46 PMOS基板黏於R=50mm模具上之線性區VG-NID曲線......60
圖4-47 PMOS基板黏於R=50mm模具上之飽和區VG-NID曲線......61
圖4-48拉曼光譜分析......................................61
圖4-49室溫與77K之VD-ID曲線比較圖........................63
圖4-50隨溫度變化之線性區VG-NID曲線.......................63
圖4-51隨溫度變化之飽和區VG-NID曲線.......................64
圖4-52 On-Off ratio與溫度關係圖..........................64
圖4-53隨溫度變化之VG-gm曲線.............................65
圖4-54載子遷移率與溫度關係圖............................65
圖4-55次臨界擺幅與溫度關係圖............................66
參考文獻 References
[1] J. Welser, J. L. Hoyt, and J. F. Gibbons, “Electron
mobility enhancement in strained-Si N-type metal-oxide-
semiconductors field-effect transistors”, IEEE Electron Device Lett., vol.15, pp.100-102, Feb.1994.

[2] A. Lochtefeld and D. A. Antoniadis, “Investigation the relationship between electron mobility and velocity in deeply scaled NMOS via mechanical stress”, IEEE Electron Device Lett., vol.22, pp.591-593, Aug.2001.

[3] D. K. Nayak and S. K. Chun, “Low-field hole mobility of strained-Si on (100) Si1-xGex substrate”, Appl. Lett., vol.64, pp.2514-2516, 1994.

[4] S. Takagi, J. L. Hoyt, J. J. Welser, and J. F. Gibbons,
”Comparative study, of phononlimited mobility of two-
dimensional electrons in strained and unstrained-Si metal-
oxide-semiconductor field-effect transistors”, J. Appl, Phys., vol.80, pp. 1567-1577, 1996.

[5] E. A. Fitzgerald, “Dislocations in strained-layer
epitaxy : Theory, experiments, and applications”, Mater. Sci. Rep., vol.7, pp.88-142, 1991.

[6] E. A. Fitzgerald, Y. H. Xie, D. Monroe, G. P. Watson, J. M. Kuo, and P. J. Silverman, “Defect control in relaxed, graded GeSi/Si”, Mater. Sci. Forum, vol.143-147, pp.471-481, 1994.

[7] E. A. Fitzgerald, Y.-H. Xie, D. Monroe, P. J. Silverman, J. M. Kuo, A. R. Kortan, F. A. Thiel, and B. E. Weir, “Relaxed GexSi1-x structures for Ⅲ-Ⅴ integration with Si and high mobility two dimensional electron gases in Si”, J. Vac. Sci. Technol. B, Microelectron. Process. Phenom., vol.10, pp.1807-1819, 1992.
[8] M. L. Lee and E. A. Fitzgerald, “Hole mobility enhance-
ment in nanometer-scale strained-silicon heterostructures grown on Ge-rich relaxed Si1-xGex “, J. Appl. Phys., vol.94, pp.2590-2596, 2003.

[9] K. Rim et al., “Strained-Si NMOSFETs for high-performance
CMOS technology”, in Symp. VLSI Tech. Dig., pp.59-60, 2001.

[10] K. Rim et al., “Characteristics and device design of sub-100-nm strained-Si N- and PMOSFETs”, in Symp. VLSI Tech. Dig., pp.98-99, 2002.

[11] K. Rim et al., “Fabrication and mobility characteristics of ultra-thin strained-Si directly on insulator(SSDOI) MOSFETs”, in IEDM Tech. Dig., pp.49-52, 2003.

[12] K. Rim, J. Welser, J. L. Hoyt, and J. F. Gibbons, “Enhanced hole mobilities in surface-channel strained-Si pMOSFETs”, in IEDM Tech. Dig., pp.517-520, 1995.

[13] C. K. Maiti, L. K. Bera, S. S. Dey, D. K. Nayak, and N. B. Chakrabarti, “Hole mobility enhancement in strained-Si pMOSFETs under high vertical field”, Solid State Electron., vol.41, pp.1863-1869, 1997.

[14] J. L. Hoyt, H. M. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. A. Fitzgerald, and D. A. Antoniadis, “strained silicon MOSFET technology”, in IEDM Tech. Dig., pp.23-26, 2002.

[15] M. L. Lee, C. W. Leitz, C. Zhiyuan, A. J. Pitera, G. Taraschi, D. A. Antoniadis, and E. A. Fitzgerald, “Strained Ge channel p-type MOSFETs fabricated on Si1-xGex/Si virtual substrate. Materials issues in novel Si-base technology”, in Proc. MRS Symp., vol.686, pp.39-43, 2002.

[16] S. Ito et al., “Mechanical stress effect of etch-stop nitride and its impact on deep submicrometer transistor design”, in IEDM Tech. Dig., pp.247-250, 2000.

[17] A. Shimizuet al., “Local mechanical-stress control(LMC)
: A new technique for CMOS-performance enhancement”, in IEDM Tech. Dig., pp.433-436, 2001.

[18] A. Steegen et al., “Silicide induced pattern design and orientation dependent transconductance in MOS transistors”, in IEDM tech. Dig., pp.497-500, 1999.

[19] S. Pidin, T. Mori, R. Nakamura, T. Saiki, R. Tanabe,S. Satoh, M. Kasw, K. Hashimoto, and T. Sugii, “MOSFET current drive optimization using silicon nitride capping layer for 65-nm technology node”, in Symp. VLSI Tech. Dig., pp.54-55, 2004.

[20] C. S. Smith, “Piezoresistance effect in germanium and silicon”, Phys. Rev., vol.94, pp.42-49, 1954.

[21] B. Kloeck and N. F. de Rooij, “Mechanical Sensors”, in Semiconductor Sensors, S. M. Sze,Ed. New York:Wiley, 1994.

[22] S. E. Thompson et al., “A logic nanotechnology featuring strained silicon”, IEEE Electron Device Lett., vol.25, pp.191-193, Mar.2004.

[23] G. Scott, J. Lutze, M. Robin, F. Nouri, and M. Manley, “NMOS drive current reduction cause by layout and trench isolation stress”, in IEDM tech. Dig., pp.827-830, 1999.

[24] Y. G. Wang, D. B. Scott, J. Wu, J. L. Waller, J. Hu, K. Liu, and V. Ukraintsev, “Effect of uniaxial mechanical stress on drive current of 0.13μm MOSFETs”, in IEEE Transactions on Electron Device, vol.50, pp.529-531, Feb.2003.
[25] S. Maikap et al., “Mechanically strained strained-Si NMOSFETs”, in IEEE Electron Device Lett., vol.25, pp.40-42, Jan.2004.

[26] C. Gallon et al., “Electrical analysis of external mechanical stress effects in short channel MOSFETs on (001) silicon”, in Solid-State Electronics, pp.561-566, 2004.

[27] Wei Zhao et al., “Partially depleted SOI MOSFETs under uniaxial tensile strain”, in IEEE Transactions on Electron Device, vol.51, pp.317-323, Mar.2004.

[28] Shin-ichi et al., “Sub-band structure engineering for advanced CMOS channels”, in Solid-State Electronics, pp.284-69, 2005.

[29] Y. Toivola, J. Thurn, and R. F. Cook, “Influence of deposition conditions on mechanical properties of low-pressure chemical vapor deposited low-stress silicon nitride film”, Appl. Phys. J., 94, pp. 6915-6922, 2003.

[30] J. E. Lilienield, U.S. Patent 1,745,175, 1930.

[31] O. Heil, British Patent 439,457, 1935.

[32] W. Shockley and G. L. Pearson, “Modulation of conductance of thin films of semiconductors by surface changes”, Phys. Rev, 74, 232, 1948.

[33] D. Kahng and M. M. Atalla, “Silicon-silicon dioxide field induce surface devices”, IRE Solid-State Device Res. Conf., Carnegie Institute of Technology, Pittsburgh, Pa.,1960. D. Kahng, “A historical perspective on the development of MOS transistors and related device”, IEEE Tran. Electron Device, ED-23, 655, 1976.

[34] H. K. J. Ihantola, “Design Theory of a surface field-effect transistor”, Stanford Electron. Lab. Tech. Rep. NO. 1661-1, 1961.

[35] H. K. J. Ihantola and J. L. Moll, “Design Theory of a surface field-effect transistor”, Solid State Electron., 7, 426, 1964.

[36] C. T. Sah, “Characteristics of metal-oxide-
semiconductor transistor”, IEEE Tran. Electron Device, ED-11, 324, 1964.

[37] S. R. Hotstein and F. P. Heiman, “The silicon insulated-gate field-effect transistor”, Proc. IEEE, 51, 1190, 1963.

[38] J. T. Wallmark and H. Johnson. Field Effect Transistors, Physics, Technology, and Applications, Prentice-Hall. Englewood Clffs, N. J., 1966.

[39] P. Richman, MOSFET`s and Integrated Circuits, Wiley, New York, 1973.

[40] J. R. Brews, “Physics of the MOS transistor”, in D. Kahng, Ed., Applied Solid State, Suppl. 2A. Academic, New York, 1981.

[41] L. L. Chang and H. N. Yu, “The germanium insulate-gate field-effect transistor(FET)”, Prob. IEEE, 53, 316,1965.

[42] C. W. Wilmsen and S. Szpak, “MOS processing for Ⅲ-Ⅴ compound semiconductors : overview and bibliography”, Thin Solid Film, 46, 17, 1977.

[43] “Looking ahead to the Year 2000. Technology”, Electronics, 53.(9)530, 1980.

[44] G. Moore, “VLSI : some fundamental challenges”, IEEE Spectrum, 16(4)30, 1980.
[45] 施敏原著,黃調元譯, ”半導體元件物理與製作技術第二版”,國立交通大學出版社,民國九十二年。

[46] 張華著, “材料分析”,中國材料科學學會,民國九十二年四月。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.146.152.99
論文開放下載的時間是 校外不公開

Your IP address is 3.146.152.99
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code