Responsive image
博碩士論文 etd-0804105-204017 詳細資訊
Title page for etd-0804105-204017
論文名稱
Title
高屏近岸與南海北部海域有機碳代謝之時空變化
Spatial and temporal variability of organic carbon metabolism in Kaoping Coastal Sea and northern South China Sea
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
148
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2005-07-20
繳交日期
Date of Submission
2005-08-04
關鍵字
Keywords
有機碳、粗生產力、群聚呼吸力、細菌呼吸力
bacterial respiration, dark community respiration, organic carbon, gross production
統計
Statistics
本論文已被瀏覽 5666 次,被下載 1647
The thesis/dissertation has been browsed 5666 times, has been downloaded 1647 times.
中文摘要
本研究主要探討高屏近岸及南海北部邊緣海域,不同環境因子造成的水文化學與營養鹽變動,對有機碳之新陳代謝之影響,並進一步瞭解有機碳之生成及消耗與二氧化碳之源(source)與匯(sink)之間的關係。
高屏峽谷受到高屏溪沖淡水影響,夏季豐水期時,峽谷內營養鹽濃度隨著流量的增加而逐漸提高。南海北部陸棚區主要受到河川沖淡水或是湧升流影響;海盆區則是受到冬季混合層深化使營養鹽抬升。研究期間高屏峽谷Int. GP(integrated gross production)與Int. DCR(integrated dark community respiration)分別介於1389~8918 mgC m-2d-1及919∼5848 mgC m-2d-1,南海北部分別介於851~5032 mgC m-2d-1及435∼10747 mgC m-2d-1。高屏峽谷因受到高屏溪沖淡水影響,提高營養鹽與高溫以及日照,使粗生產力最高值出現在夏季,南海北部由於受到透光層深化影響最高值出現在夏季之海盆測站。由GP及DCR與光強度(PAR, photosynthestically available radiation)、溫度、鹽度及營養鹽分別呈現正負相關,顯示環境之物理因素、沖淡水之注入及營養鹽的增加均為調控GP及DCR大小之主要因素。高屏峽谷與南海北部之DCR皆主要決定GP之大小;DCR主要由BR(bacterial respiration)所貢獻,高屏峽谷貢獻度約78%,
而研究期間細菌呼吸力佔群聚呼吸力(Int. BR/ Int. DCR)約為40% ~ 88%,南海北部的BR貢獻度則低於高屏峽谷約65%,Int. BR/ Int. DCR約為58% ~ 88%。高屏峽谷夏季豐水期時,Int. GP/ Int. DCR 比值大於1測站較多為自營性(autotrophic)系統,能
Abstract
This study aims to understand the influence of hydrochemical and nutrient dynamics on the metabolism of organic carbon, and to explore the relationship between the metabolism of organic carbon and air-sea fluxes of CO2 in the Kaoping coastal zone and the northern South China Sea (NSCS).
Distributions of nutrients in the Kaoping Canyon increased generally with the increase of freshwater input from the Kaoping River that discharged the highest rate during the summer season. In the northern SCS, the enhanced nutrient distributions were caused by freshwater input or upwelling in coastal and shelf zones, and by vertical mixing in the central basin in winter. During the study periods, the integrated gross production (IGP) ranged from 1389 to 8918 mgC m-2d-1 in the Kaoping Canyon, and from 851 to 5032 mgC m-2d-1 in the NSCS. The integrated dark community respiration (IDCR) ranged from 919 to 5848 mgC m-2d-1 in the Kaoping Canyon, and from 435 to 10707 mgC m-2d-1 in the NSCS. The higher IGP was found in summer than in winter for both study areas, primarily due to greater inputs of freshwater from the Kaoping River and/or from the Pearl River. The deeper euphotic depth may be also
responsible for higher IGP in the central basin during the summer season. Positive correlations are significant between GP (DCR) and temperature, PAR and nutrients, and negative correlations are also significant between GP (DCR) and salinity, showing the significant impacts of freshwater inputs and climatic changes on GP (DCR). However, GP was determined largely by DCR, and DCR was attributed mainly to BR (bacteria respiration) for both the Kaoping Canyon (ave., 78%) and the NSCS (ave., 65%). In addition, the ratio of IBR/IDCR ranged from 48 to 88% for the Kaoping Canyon and from 58 to 88% for the NSCS.
The ratio of IGP/IDCR is an indicator of net ecosystem production, with >1 for the autotrophic system and <1 for the heterotrophic system. The ratio was greater than 1.0 for most stations during summer but was <1.0 away from the nearshore station during winter in the Kaoping Canyon. The ratio was <1.0 for all but stations near the Pearl estuary (H and H1 stations) during both summer and winter in the NSCS, indicating a year-round heterotrophic around the slope and basin of NSCS. However, this ratio was higher in winter than in summer in the NSCS, possibly resulted from higher GP in winter than in summer.
The IGP/IDCR may not be the sole factor in determining the air-sea fluxes of CO2. The physical forcing such as temperature and wind velocity may be also important in determining the source or sink of CO2 in the study areas.
目次 Table of Contents
致謝……………………………………………………………………I
中文摘要…………………………………………………………………II
英文摘要……………………………………………………………………III
目錄……………………………………………………………………………………IV
圖目錄………………………………………………………………………V
表目錄…………………………………………………………………VI

第一章 前言…………………………………………………………1
第二章 研究區域………………………………………………………………9
2-1 研究區域………………………………………………………………9
第三章 研究材料及方法……………………………………………16
3-1 採樣時期及方法…………………………………………………16
3-2 實驗方法……………………………………………………18
第四章 結果與討論…………………………………………………………30
4-1水文環境…………………………………………………………30
4-2高屏峽谷及南海北部透光層營養鹽之變化及控制因子……………………………………………………………………58
4-3 高屏峽谷粗生產力(gross production)與群聚呼吸力(dark community respiration)之變化及控制因子………84

4-4南海北部粗生產力(gross production)與群聚呼吸力(dark community respiration)之變化及控制因子…………………………102
4-5高屏峽谷與南海北部之有機碳代謝與pCO2變化及通量………………………………………………………………119
第五章 結論……………………………………………………………127
參考文獻……………………………………………………………………130
中文部分………………………………………………………130
英文部分…………………………………………………………131
參考文獻 References
中文部分:
王詩銘,2004,南海北部有機碳化學研究。中山大學海洋地質及化學研究所碩士論文,共113頁。
王樹倫,1997,西北太平洋邊緣海二氧化碳之研究。中山大學海洋地質及化學研究所博士論文,共228頁。
白書禎、郭廷瑜、鍾仕偉、蘇宗德(1998),疊氮修正希八辣光度測氧法及其在環境監測上的應用。化學,第56卷3期,p173-185。
何晟銘,2004,河川輸出對高屏海域碳及營養鹽生地化作用之影響。中山大學海洋地質及化學研究所碩士論文,共118頁。
吳夢麟,2004,高屏海底峽谷與陸棚流場之研究。中山大學海洋地質及化學研究所碩士論文,共131頁。
洪佩瑩,2001,大鵬灣碳及營養鹽之生地化作用及通量研究。中山大學海洋地質及化學研究所碩士論文,共156頁。
陳鎮東,2001,南海海洋學,渤海堂出版社,共506頁。
唐存勇、梁文德及莊文思,1999,Buoy Observation in the South China Sea. 88年度,海洋科學學門研究成果發表會論文摘要集,183-184頁。
許明光,1999,SAR 影像上台灣灘水深與黃東海東海及南海北部內波之研究。
88年度,底海洋科學學門研究成果發表會論文摘要集,173-175頁.
黃俊傑,2001,從高屏峽谷水文之時空變化來探討懸浮物質傳輸的機制。中山大學海洋資源研究所碩士論文,共101頁。
黃珠美,2004,磷可能限制南海浮游植物生長。中山大學海洋生物研究所碩士論文,共130頁。
楊鈞沂,2001,高屏溪流域陸源物質之剝蝕與傳輸。中山大學海洋地質及化學研究所碩士論文,共127頁。
經濟部水資局,2001,中華民國九十年台灣水文年報。
韓舞鷹、吳林興、 黃西能容榮貴、王漢奎、 李鵬程,1982,南海中部水化學要素的研究,南海海區綜合調查研究報告(一),科學出版社,159-176。









英文部分:
Cai, W.-J. and Y. C. Wang, 1998. The chemistry, flux and source of carbon dioxide in the estuarine water of the Satilla and Altamaha River, Georgia. Limnol. Oceanogr., 43, 657-668.
Chester, R., 1990. Marine Geochemistry. Chapman & Hall, London.
Devol, A. H., P. D. Quay, J. E. Richey and L. A. Martinelli, 1987. The role of gas exchange in the inorganic carbon, oxygen, and 222Rn gudgets of Amazon River. Limnol. Oceanogr., 32, 235-248.
Dickson, A. G., 1981. An exact definition of total alkalinity and a procedure for the estimation of alkalinity and total inorganic carbon from titration data. Deep-Sea Res., 28A, 609-623.
DOE, 1994. Handbook of methods for the analysis of the various parameter of the carbon dioxide system in seawater, in U.S. Department of Energy CO2 science Team Report, version 2, edited by A.G. Dickson and C. Goyet C.. (unpublished manuscript).
Duarte, C. M., S. Agusti, J. Aristegui, N. Gonzalez and R. Anadon, 2001. Evidence for a heterotrophic subtropical NE Atlantic. Limnol. Oceanogr., 46: 425-428.
Fan, K.L. and C.Y. Yu, 1981. A study of water masses in the seas of Southernmost Taiwan. Acta Oceanogr. Taiwanica, 12, 94-111.
Falkowski, P. G., R. T. Barber and V. Smetacek, 1998. Biogeochemical controls and feedbacks on ocean primary production. Science, 281:200-206.
Houghton, J. T., Y., Ding, D. J., Griggs, M., Moguer, P. J., van der Linden and D., Xiaosu, 2001. The Scientific Basis contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change. Climate Change. Cambridge Univ. Press, Cambridge, 944 pp.
Holmes, R. M., J. W. McClelland, D. M. Sigman, B. Fry and B. J. Peterson, 1998. Measuring 15N-NH4+ in marine, estuarine and fresh waters: an adaptation of the ammonia method for samples with low ammonium concentrations. Mar. Chem., 60: 235-243.
Hu, J. Y., H. Kawamura, H. Hong and Y. O. Qi, 2000. A review on the currents in the South China Sea: seasonal circulation, South China Sea Warm Current and Kuroshio intrsion. J. Oceanogr. 56, 607-624.
Huang, C. Y., P. M. Liew, M. Zhao, T. C. Chang, C. M. Kuo, M. T. Chen, C. H. Wang and L. F. Zheng, 1997. Deep-sea and lake records of southeast Asian paleomonsoons for the last 25 thousand years. Earth Plant. Sci. letts., 146:59-72.
Hung, J.-J. and J.-L. Hsu, 2004. Present state and historical change of trace metals in coastal sediments off southwestern Taiwan. Mar. Pollut. Bullet., 49:986-998.
Hung, J. J. and P. L. Lin, 1995. Distribution of dissolved organic carbon in the continental margin off northern Taiwan. Terrest. Atmos. Oceanogr., 6: 13-26.
Hung, J.-J., P. L. Lin and K. K. Liu, 2000. Dissolved and particulate organic carbon in the southern East China Sea. Conti. Shelf Res., 20:545-569.
IGBP, 1994. IGBP in action: workplan 1994-1998. IGBP report NO. 28, Stockholm.
IGBP, 1995. LOICZ: Implementation Plan, eds., IGBP Report No. 33, Stockhlom.
Inderm
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code