Responsive image
博碩士論文 etd-0804108-173141 詳細資訊
Title page for etd-0804108-173141
論文名稱
Title
以低壓化學氣相沉積法於負型氮化鎵基板上備製氮化矽薄膜之特性分析
Characterization of Silicon Nitride Films on n-GaN Prepared by Low-Pressure Chemical Vapor Deposition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-07-18
繳交日期
Date of Submission
2008-08-04
關鍵字
Keywords
負型氮化鎵、氮化矽、低壓化學氣相沉積法
LPCVD, Silicon Nitride Oxide, n-GaN
統計
Statistics
本論文已被瀏覽 5654 次,被下載 1214
The thesis/dissertation has been browsed 5654 times, has been downloaded 1214 times.
中文摘要
探討以低壓氣相沉積法成長氮化矽薄膜於負型氮化鎵基板上的物理與化學特性,且利用金氧半結構來分析電特性。此外,利用硫化銨進行表面的處理以改善薄膜特性。另一方面,利用以液相沉積法成長二氧化矽薄膜時所產生的氟離子來鈍化氮化矽薄膜以進一步的改善電特性。
Abstract
In this study, the characteristics of low-pressure chemical vapor deposition deposited silicon nitride films on n-GaN substrate were investigated. The physical and chemical properties were measured and surveyed. And an Al/LPCVD-Si3N4/n-GaN MOS structure was used for the electrical characterizations. For the electrical property improvements, we investigated the low-pressure chemical vapor deposition deposited silicon nitride films by (NH4)2Sx treatment. Furthermore, the silicon nitride films were passivated by fluorine ions to improve the electrical characterizations that came from the liquid phase deposited SiO2 stacks.
After the (NH4)2Sx treatment and fluorine ions passivation, the dielectric constant of low-pressure chemical vapor deposition deposited silicon nitride films were maintained and the leakage current density were improved. The highest dielectric constant is 12.13, and lowest leakage current density are 1.73×10-10 A/cm2 at 1 MV/cm and 3.81×10-10 A/cm2 at 1 MV/cm for the LPCVD-Si3N4 film after fluorine passivation and (NH4)2Sx treatment.
目次 Table of Contents
Chapter 1 1
Introduction 1
1-1 Background of GaN-based Materials 1
1-2 GaN Metal-Oxide-Semiconductor Field Effect Transistors 3
1-3 Motivation 5
1-4 Comparision of deposition methods of Si3N4 6
1-5 Advantages of Low-Pressure Chemical Vapor Deposition 6
1-6 Motivation of (NH4)2Sx treatment on n-GaN 7
1-7 Motivation of fluorine passivated LPCVD-Si3N4/(NH4)2Sx treatment n-GaN MOS structure 7
References 15
Chapter 2 20
Experiment 20
2-1 CVD theorem 20
2-2 Deposition System of LPCVD 22
2-3 Properties of source materials 23
2-4 Mechanisms of LPCVD-Si3N4 24
2-5 Silicon oxide prepared by LPD 24
2-5.1 Deposition system 24
2-5.2 Mechanisms of LPD-SiO2 24
2-5.3 Preparations of deposition solutions 25
2-6 Deposition process 27
2-6.1 Wafer cleaning procedures 27
2-6.2 Aluminum metal cleaning processes 27
2-6.3 Film deposited 28
2-6.4 Fabrication of Metal-Oxide-Semiconductor Structure 29
2-7 Characterizations 30
2-7.1 Physical and chemical properties 30
2-7.2 Electrical Properties 31
References 42
Chapter 3 43
Results and Discussion 43
3-1 ESCA analyses of LPCVD-Si3N4 films as a function of deposition temperature 44
3-1.2 Deposition rate of LPCVD-Si3N4 films as a function of deposition temperature 44
3-1.3 FE-SEM Views of LPCVD-Si3N4 Films 45
3-1.4 AFM Analysis of LPCVD-Si3N4 Films 45
3-1.5 XRD Patterns of LPCVD-Si3N4 Films 46
3-1.6 XPS Analysis of LPCVD-Si3N4 Films 46
3-1.7 Leakage Current Densities of LPCVD-Si3N4 Films as a Function of SiH4 Concentration 47
3-1.8 Mechanisms of leakage current 48
3-1.8.1 Frenkel-Poole plots for as-grown LPCVD-Si3N4 films 48
3-1.9 Capacitance-Voltage Measurements of LPCVD-Si3N4 Films as a function of SiH4 Concentration 48
3-1.10 FTIR Spectra of LPCVD-Si3N4 Films 50
3-1.11 Model for Deposition Mechanism 50
3-2 Improvement of Electrical Characteristics by (NH4)2Sx Treatment 51
3-2.2 AFM Images of LPCVD-Si3N4 Film after (NH4)2Sx Treatment 51
3-2.3 Electric Characteristics of LPCVD-Si3N4 Films after (NH4)2Sx Treatment 52
3-2.4 FTIR Spectra of LPCVD-Si3N4/(NH4)2Sx Treatment n-GaN Film 53
3-2.5 XPS Spectra of LPCVD-Si3N4/(NH4)2Sx Treatment n-GaN Films 54
3-3 Improvement of Electrical Characteristics by Fluorine Passivated 55
3-3.1 FE-SEM Views of LPCVD-Si3N4 Films after Fluorine Passivated 55
3-3.2 AFM Images of LPCVD-Si3N4 Film after Fluorine Passivated 56
3-3.3 Electric Characteristics of LPCVD-Si3N4 / (NH4)2Sx Treatment n-GaN after Fluorine Passivated 56
3-3.4 SIMS Depth Profile of LPCVD-Si3N4 Film after Fluorine Passivated 57
References 89
Chapter 4 91
Conclusions 91
參考文獻 References
Chaper 1
[1] Chia-Lin Chen, “Influences of GaN Nucleation Layer on the Quality of GaN / Sapphire by LP-MOCVD”, 2004.
[2] Z.Z. Bandic, P.M. Bridger, E.C. Piquette, T.C. McGill, R.P. Vaudo, V.M. Phanse and J.M. Redwing, “High voltage (450 V) GaN Schottky rectifiers”, Appl. Phys. Lett. Vol. 74, pp. 1266-1268, 1999.
[3] S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee, “Fabrication and performance of GaN electronic devices”, Materials Science and Engineering, vol. 150, pp. 1-158, 2000.
[4] J. Han, A. G. Baca, R. J. Shul, C. G. Willison, L. Zhang, F. Ren, A. P. Zhang, G. T. Dang, S. M. Donovan, X. A. Cao, H. Cho, K. B. Jung, C. R. Abernathy, S. J. Pearton, and R. G. Wilson, ”Growth and fabrication of GaN/AlGaN heterojunction bipolor transistor”, Appl. Phys. Lett. Vol. 74, pp. 2702-2704, 1999.
[5] M. Asif Khan, X. Hu, A. Tarakji, G. Simin, J. Yang, R. Gaska, and M. S. Shur, ”AlGaN/GaN metal-oxide-semiconductor heterostructure field-effect transistors on SiC substrate”, Appl. Phys. Lett., vol. 77 pp. 1339-1341, 2000.
[6] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abermathy, ”Atomic structure and electric properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature”, Appl. Phys. Lett., vol. 73, pp. 3893-3895, 1998.
[7] J. W. Johnson, B. Luo, F. Ren, B. P. Gila, W. Krishnamoorthy, C. R. Abernathy, S. J. Pearton, J. I. Chyi, T. E. Nee, C. M. Lee, and C. C. Chuo, ”Gd2O3/GaN metal-oxide-semiconductor field-effect transistor”, Appl. Phys. Lett., vol. 77, pp. 3230-3232, 2000.
[8] Yoshitaka Nakano, Takashi jimbo, “Electrical characterization of SiO2 / n-GaN metal-insulator-semiconductor diodes”, J. Vac. Sci. Technol. B, vol. 21(4), p 1364 2003.
[9] F. Ren, M. Hong, S.N.G. Chu, M.A. Marcus, M.J. Schurman, A. Baca, S.J. Pearton, and C.R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3) / GaN metal-oxide –semiconductor field-effect transistors “, Appl. Phys. Lett., vol. 73(26), pp. 3893-3895, 1998.
[10] F. Ren, M. Hong, S.N.G. Chu, M.A. Marcus, M.J. Schurman, A. Baca, S.J. Pearton, and C.R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3) / GaN metal-oxide –semiconductor field-effect transistors “, Appl. Phys. Lett., vol. 73(26), pp. 3893-3895, 1998.
[11] S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee, “Fabrication and performance of GaN electronic devices ”, Materials Science and Engineering, vol. 150, pp. 1-158, 2000.
[12] C.R. Abernathy, F. Ren, S. J. Pearton, M. Hong, M. Marcus, unpublished results, 1997.
[13] F. Ren, C.R. Abermathy, J. D. MacKenzie, B.P. Gila, S.J. Pearton, et al. (EDs.), Proceedings of the MRS Symposium, vol. 483, p. 433, 1997.
[14] H. Kawai, M. Hara, F. Nakamura, S. Imanaga, ”MOCVD growth technologies for applications in AlGaN/GaN high electron mobility transistors”, Electron. Lett., vol. 34, p. 592, 1998.
[15] F. Ren, M. Hong, S. N. G. Chu, M. A. Marcus, M. J. Schurman, A. Baca, S. J. Pearton, and C. R. Abermathy, ”Atomic structure and electric properties of single-wall carbon nanotubes probed by scanning tunneling microscope at room temperature”, Appl. Phys. Lett., vol. 73, pp. 3893-3895, 1998.
[16] F. Ren, C. R. Abermathy, J. D. MacKenzie, B. P. Gila, S. J. Pearton, M. Hong, M. A. Marcus, M. J. Schurman, A.G. Baca, R.J. Shul, Solid-State Electron., Vol. 42(12), p. 2177, 1998.
[17] M. Hong, K.A. Anselm, J.P. Mannaerts, J. Kwo, A.Y. Cho, A.R. Kortan, C.M. Lee, J.I. Chyi, T.S. Lay, presented at North American Conference on Molecular Beam Epitaxy, Banff, Canada, 10-13 October 1999, J. Vac. Sci. Technol. B, 2000, in press.
[18] S. Arulkumaran, T. Egawa, H. Ishikawk, T. Jimbo, M. Umeno, ”Investigations SiO2/n-GaN and Si3N4/n-GaN insulator-semiconductor interfaces with low interface state density”, Appl. Phys. Lett., vol. 73, pp. 809-811, 1998.
[19] T. Hashizume, R. Nakasaki, H. Hasegawa, in : Proceedings of the Electronic Marterials Conference, 1999.
[20] M. Hong, H.M. Ng, J. Kwo, A.R. Kortan, J.N. Baillargeon, S.N.G. chu, J.P. Mannaerts, A.Y. Cho, F. Ren, C.R. Abernathy, S.J. Pearton, J.I. Chyi, in : R.F. Kopf, A.G. Baca, S.N.G. Chu (Eds.), Proceedings of The Electrochemical Society on Compound Semiconductor Power Transistors Ⅱ and State-of-the-art Program on Compound Semiconductors ⅩⅩⅩⅡ, vol. 2000/1. p. 103.
[21] R. Therrien, G. Lucovsky, R. F. Davis, Phys. Statist. Sol., (a), p. 793, 1999.
[22] S.J. Pearton, F. Ren, A.P. Zhang, K.P. Lee, “Fabrication and performance of GaN electronic devices”, Materials Science and Engineering, vol. 150, pp. 1-158, 2000.
[23] F. Ren, M. Hong, S.N.G. Chu, M.A. Marcus, M.J. Schurman, A. Baca, S.J. Pearton, and C.R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3) / GaN metal-oxide –semiconductor field-effect transistors “, Appl. Phys. Lett., vol. 73(26), pp. 3893-3895, 1998.
[24] F. Ren, M. Hong, S.N.G. Chu, M.A. Marcus, M.J. Schurman, A. Baca, S.J. Pearton, and C.R. Abernathy, “Effect of temperature on Ga2O3(Gd2O3) / GaN metal-oxide-semiconductor-field-effect transistors “, Appl. Phys. Lett., vol. 73(26), pp. 3893-3895, 1998.
[25] M.A. Khan, X. Hu, G. Sumin, A. Lunev, J. Yang, R. Gaska and M.S. Shur, “AlGaN / GaN Metal Oxide Semiconductor Heterostructure Field Effect Transistor”, IEEE, Electron. Dev. Lett., vol. 21, pp. 63-65. 2000.
[26] M.R. PASCUCCI and R.N. KATZ, Interceram. 42 (1993) 71.
[27] M.H. VAN de VOORDE, C.A. M. SISKENS and W. BETTERIDE, Sprechsaal 115 (1992) 1027.
[28] P.D. Davides, L. I. Maissel, J. Appl. Phys. 37 (1966) 574.
[29] John T. Milek, Silicon Nitride for Microelectronic Applications,
IFI/PLENUM˙NEW YORK-WASHINGTON-LONDON, 1971.
[30] Kao-Ming Chang, Chao-Chen Cheng, Chia-Ching Lang, “Electrical
properties of SiN/GaN MIS diodes formed by ECR-CVD”, Solid-State Electronics, vol. 46, pp. 1399-1403, 2002.
[31] G. Stringfellow, Theory and Practice, Academic Press, Boston, 1989.
[32] J.L. Lee, J. K. Kim, J.W. Lee, Y.J. Park, and T. Kim, Phy. Statist.
sol., (a) 176, p. 763, 1999.
[33] X.A. CaO, S.S. J. Pearton, G. Dang, A.P. Zhang, F. Ren, and J.M. Van Hove, Appl. Phys. Lett., vol. 75, p. 4130, 1999.
[34] H.N. Chen, C.L. Lee and T.F. Lei, “The effects of fluorine passivation on polysilicon thin-filmtransistors,” IEEE Trans. Electron Device, vol. ED-41 pp. 698-702, 1994.
[35] J.W. Park, B.T. Ahn and K. Lee, “Effects of F+ Implantation on the Characteristics of Poly-Si Films and Low-Temperature n-ch Poly-Si Thin-Film Transistors, ” Jpn. J. Appl. Phys. vol. 34, pp. 1436-1441, 1995.
Chapter 2
[1] James D. Plummer, Michael D. Deal, and Peter B. Griffin, Silicon
VLSI Technol., p. 512, 2000.
[2] Y.S. Yoon, W. N. Kang, H.S. Shin, S.S. Yom, T.W. Kim, J.Y. Lee,
D.J. Choi, and S.S. Baek, “Structural properties of BaTiO3 thin
films on Si grown by metalorganic chemical vapor deposition,” J.
Appl. Phys., vol. 73, pp. 1547-1549, 1993.
[3] John T. Milek, “Silicon Nitride for Microelectronic Applications”,
1971.
[4] H. Nagayama, H. Honda, and H. Kawahara, “A new process for
silica coating,” J. Electrochem. Soc., vol. 135, pp. 2013, 1989.
[5] T. Maruyama, K. Yorozu, T. Noguchi, Y. Seki, Y. Saito, T. Araki and Y. Nanishi, “Surface treatment of GaN and InN using (NH4)2Sx”, J. Cryst. Growth., vol. 1022, pp. 237–239, 2002.
Chapter 3
[1] B.C. Kang, S.B. Lee, and J.H. Boo, “Growth of TiO2 thin-films on Si(100) substrates using single molecular precursors by metal-organic chemical-vapor-deposition,” Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.
[2] Y.S. Kim, M.Y. Sung, Y.H. Lee, B.K. Ju, and M.H. Oh, “The Influence of Surface Roughness on the Rlrctric Conduction Process in Amorphous Ta2O5 Thin Films”, J. Electrochemical Soc., vol. 146, pp. 3398-3402, 1999.
[3] http://www.enigmatic-consulting.com/semiconductor_processing/ CVD_Fundamentals/films/SiN_properties.html
[4] G. –R. Tanga,*, Y. –P. Zhaoa, Y.Z. Hub, T. Paul Chowb, Ronald J, Gutmannb, “XPS and AFM study of chemical mechanical polishing of silicon nitride” Thin Solid Films, vol. 333, pp. 219-223, 1998.
[5] S. M. Sze, Physics of Semiconductor Devices second edition, Chap. 7, Wiley, New York, 1981.
[6] Tsung-Shiun Wu, “High Dielectric Constant and Low Leakage Current TiO2 Thin Films on Silicon”, 2004.
[7] H.C. Casey, “Low interface trap density for remote plasma deposited SiO2 on n-type GaN”, Appl. Phys. Lett., vol. 68, pp. 1850-1852, 1996.
[8] Suparna Pal*, D.N. Bose, “Fabrication and characterization of GaAs MIS devices with N-rich PECVD SixNy dielectric,” Appl. Surf. Sci., vol. 181, pp. 179-184, 2001.
[9] Wen-Shiang Lee, Chi-Huei Lin, Si-Chen Lee, “Oxidation of silicon nitride prepared by plasma-enhanced chemical vapor deposition at low temperature,” Appl. Phys. Lett., vol. 65, pp. 17-24, 1994.
[10] T. Maruyama, K. Yorozu, T. Noguchi, Y. Seki, Y. Saito, T. Araki, and Y. Nanishi, “Surface treatment of GaN and InN using (NH4)2Sx”, phys. stat. sol.,vol. 7, pp. 2031-2034, 2003.
[11] B. Agius, S. Rigo, and F.Rochet, “Structural evolution of very thin silicon oxide films during thermal growth in dry oxygen,” Appl. Phys. Lett., vol. 44, pp. 48-50, 1984.
[12] Neerushana Jehanathana,b, Byron Walmsleya,b, Yinong Liua,*, John Dellb, “Oxidation of PECVD SiNx thin films,” Journal of Alloys and Compounds, vol. 437, pp. 332-338, 2007.
[13] J.L. Lee, J. K. Kim, J.W. Lee, Y.J. Park, and T. Kim, Phy. Statist.
sol., (a) 176, p. 763, 1999.
[14] X.A. CaO, S.S. J. Pearton, G. Dang, A.P. Zhang, F. Ren, and J.M. Van Hove, Appl. Phys. Lett., vol. 75, p. 4130, 1999.
[15] M.K. Lee, C.F. Yen, and J.J. Hung, “Electrical Characteristics of Liquid Phase Deposition TiO2 Films on GaAs Substrate with (NH4)2Sx Treatment, Journal of The Electrochemical Society, vol. 153, pp. F77-F80, 2006.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code