Responsive image
博碩士論文 etd-0804108-223222 詳細資訊
Title page for etd-0804108-223222
論文名稱
Title
CTMP於胰島素訊息傳遞中調控Akt磷酸化之探討
Carboxyl-Terminal Modulator Protein (CTMP) Functions as a Positive Regulator of Akt/PKB in Response to the Insulin Signaling
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
91
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-23
繳交日期
Date of Submission
2008-08-04
關鍵字
Keywords
none
Insulin, Akt, CTMP
統計
Statistics
本論文已被瀏覽 5674 次,被下載 0
The thesis/dissertation has been browsed 5674 times, has been downloaded 0 times.
中文摘要
Akt(Protein Kinase B)為一控制細胞生存、細胞凋亡、以及蛋白質轉錄之重要訊息傳遞分子,可藉由細胞表面之接受器接受訊息後促進Akt活化。當PI3K/Akt Pathway中之訊息傳遞分子因突變失去功能或活化皆可能造成此訊息傳遞路徑之過度活化。過度活化之Akt會造成蛋白質過度轉譯、細胞週期不受調控、以及細胞無法正常凋亡,最終轉型為癌化細胞。去磷酸化及部分調控蛋白之影響是抑制Akt活性的主要機制,其中,Carboxyl-Terminal Modulator Protein (CTMP)於2001年所發現。並觀察到CTMP可與Akt結合進而負向調控Akt之活性。然而,CTMP與Akt之結合之區域尚未被報導。並且,CTMP被發現可能正向或負向調控Akt之活性,因此,其對於Akt之調控尚未被確立。在本篇論文中,將進一步探討CTMP與Akt之交互作用與其活性調控。我們藉由人類乳癌細胞株確立CTMP與Akt的磷酸化以及細胞生長之相關性,並藉由免疫沉澱以及免疫螢光之分析之結果來確認CTMP與磷酸化AKT之交互作用,而 GST pull down assay 的結果證明CTMP可能包含兩個以上能與Akt之結合之區域。此外,在HeLa細胞株中穩定表現CTMP直接的增加Akt之磷酸化,並且,在細胞starvation後處理不同濃度之胰島素可發現穩定的表達CTMP顯著的增加Akt於Thr308以及Ser473位點上之磷酸化。利用cell proliferation 以及colony forming assay來觀察穩定表現CTMP之 HeLa細胞株在不同濃度之血清的處理下之生長可發現,CTMP的表現會促進細胞之生長,因此推測CTMP可能參與PI3K/Akt訊息傳遞路徑所調控之細胞生長。此外,利用soft agar assay以及在裸鼠中所建立的人類腫瘤動物模式證明,不管是在in vitro 或 in vivo 中,CTMP皆具有促進腫瘤生長之能力,並且可能促進腫瘤之轉移能力。在本篇論文中,這些結果顯示CTMP可與Akt結合進而藉由增加Akt對於胰島素之敏感性達到正向調控Akt之活性,進一步地調控細胞以及腫瘤之生長。
Abstract
Akt/Protein Kinase B plays an important role in many biological responses including cell survival, proliferation, and nutrient metabolism. Activation of Akt/PKB by growth factors involves PIP3 binding, membrane translocation and the phosphorylation at Thr308 and Ser473 residues by PDK1 and PDK2, respectively. Dephosphorylation and AKT binding proteins were two inhibitory mechanisms for AKT. Carboxyl-terminal modulator protein (CTMP) has been demonstrated to bind to carboxyl-terminus of Akt and as a regulator on plasma membrane. However, the interaction region of CTMP to Akt is still unknown. On the other hand, contradict results of positive and negative effects to AKT activity were reported. In this study, we firstly demonstrated the CTMP protein level shows positive correlation with Akt phosphorylation and cell proliferation in human breast cancer cell. The interaction of CTMP and phosphorylation Akt by co-immunoprecipitation and immunofluorescence experiments shows that CTMP may be involved in regulating Akt phosphrylation. The results of GST pull down assay demonstrated that the direct binding and revealed more then one interaction region of CTMP to Akt. Interestingly, in HeLa cells, transiently or stably expressing CTMP can directly promote Akt phosphorylation even in basal state and significantly increase the phosphorylation at both Thr308 and Ser473 of Akt upon the insulin stimulation in the pre-starvation condition. When compared the cell growth of HeLa cells in 10% serum condition using cell proliferation and soft-agar colony forming assay, rapid cell proliferation and colony number increase were observed in cells stably expressing CTMP suggesting that CTMP may be involved in the regulation of Akt-mediated cell growth. The analogous results were also obtained from colony formation assay with different condition from 10% to 1% serum. The result of cell cycle distribution shows that the increasment of cell proliferation rate may due to the increasment of cell cycle progression in CTMP stable clones. Furthermore, CTMP stable clone promote tumor growth and metastasis in xenograft animal model. Together, these results indicated that the binding of CTMP positively modulate Akt and thus increase insulin sensitivity in HeLa cells.
目次 Table of Contents
Abstract (Chinese) …………..……………………………….……..2
Abstract ………..…………………………………………….……...4
Abbreviations………………………………………………………..6
Introduction …………………………………………………………7
Materials and Methods …………………………..……………........15
Results ……………………………………………………...…..…..28
Discussion …………………...………………………….……...…..38
References ..……….……………………..………………….……...43
Figures ………………………..…………………………….….…...50
Appendix …..……………………………………………….…...….80
參考文獻 References
1. Coffer PJ, Woodgett JR. Molecular cloning and characterisation of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem. 1991 Oct 15; 201 (2):475-81.
2. Bellacosa A, Testa JR, Staal SP, Tsichlis PN. A retroviral oncogene, akt, encoding a serine-threonine kinase containing an SH2-like region. Science. 1991 Oct 11; 254 (5029):274-7.
3. Burgering BM, Coffer PJ. Protein kinase B (c-Akt) in phosphatidylinositol-3-OH kinase signal transduction. Nature. 1995 Aug 17; 376 (6541):599-602.
4. Hanada M, Feng J, Hemmings BA. Structure, regulation and function of PKB/AKT--a major therapeutic target. Biochim Biophys Acta. 2004 Mar 11; 1697 (1-2):3-16. Review.
5. Alessi DR, James SR, Downes CP, Holmes AB, Gaffney PR, Reese CB, Cohen P. Characterization of a 3-phosphoinositide-dependent protein kinase which phosphorylates and activates protein kinase Bα. Curr Biol. 1997 Apr 1;7(4):261-9.
6. Sarbassov DD, Guertin DA, Ali SM, Sabatini DM. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science. 2005 Feb 18; 307 (5712):1098-101.
7. Delcommenne M, Tan C, Gray V, Rue L, Woodgett J, Dedhar S. Phosphoinositide-3-OH kinase-dependent regulation of glycogen synthase kinase 3 and protein kinase B/AKT by the integrin-linked kinase. Proc Natl Acad Sci. 1998 Sep 15; 95 (19):11211-6.
8. Jiang BH, Liu LZ. PI3K/PTEN signaling in tumorigenesis and angiogenesis. Biochim Biophys Acta. 2008 Jan; 1784 (1):150-8. Review.
9. Medema RH, Kops GJ, Bos JL, Burgering BM. AFX-like Forkhead transcription factors mediate cell-cycle regulation by Ras and PKB through p27kip1. Nature. 2000 Apr 13; 404 (6779):782-7.
10. Del PL, Gonzalez GM, Page C, Herrera R, Nunez G. Interleukin-3-induced phosphorylation of BAD through the protein kinase Akt. Science 1997 Oct 24; 278 (5338):687-9.
11. Barkett M, Gilmore TD. Control of apoptosis by Rel/NF-kappaB transcription factors. Oncogene. 1999 Nov 22; 18 (49):6910-24. Review.
12. Wang JM, Chao JR, Chen W, Kuo ML, Yen JJ, Yang-Yen HF. The antiapoptotic gene mcl-1 is up-regulated by the phosphatidylinositol 3-kinase/Akt signaling pathway through a transcription factor complex containing CREB. Mol Cell Biol. 1999 Sep; 19 (9):6195-206.
13. Garofalo RS, Orena SJ, Rafidi K, Torchia AJ, Stock JL, Hildebrandt AL, Coskran T, Black SC, Brees DJ, Wicks JR, McNeish JD, Coleman KG.. Severe diabetes, age-dependent loss of adipose tissue, and mild growth deficiency in mice lacking Akt2/PKB beta. J Clin Invest. 2003 Jul; 112 (2):197-208.
14. Majewski N, Nogueira V, Bhaskar P, Coy PE, Skeen JE, Gottlob K, Chandel NS, Thompson CB, Robey RB, Hay N. Hexokinase-mitochondria interaction mediated by Akt is required to inhibit apoptosis in the presence or absence of Bax and Bak. Mol Cell. 2004 Dec 3; 16 (5):819-30.
15. Dan HC, Sun M, Yang L, Feldman RI, Sui XM, Ou CC, Nellist M, Yeung RS, Halley DJ, Nicosia SV, Pledger WJ, Cheng JQ. Phosphatidylinositol 3-kinase/Akt pathway regulates tuberous sclerosis tumor suppressor complex by phosphorylation of tuberin. J Biol Chem. 2002 Sep 20; 277 (38):35364-70.
16. Schmelzle T, Hall MN. TOR, a central controller of cell growth. Cell. 2000 Oct 13; 103 (2):253-62. Review.
17. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA. Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature. 1995 Dec 21-28; 378 (6559):785-9.
18. Diehl JA, Cheng M, Roussel MF, Sherr CJ. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev. 1998 Nov 15; 12 (22):3499-511.
19. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, Ben-Ze’ev A. The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci. 1999 May 11; 96 (10):5522-7.
20. Yoeli-Lerner M, Toker A. Akt/PKB signaling in cancer: a function in cell motility and invasion. Cell Cycle. 2006 Mar; 5 (6):603-5. Review.
21. Yoeli-Lerner M, Yiu GK, Rabinovitz I, Erhardt P, Jauliac S, Toker A. Akt blocks breast cancer cell motility and invasion through the transcription factor NFAT. Mol Cell. 2005 Nov 23; 20 (4):539-50.
22. Enomoto A, Murakami H, Asai N, Morone N, Watanabe T, Kawai K, Murakumo Y, Usukura J, Kaibuchi K, Takahashi M. Akt/PKB regulates actin organization and cell motility via girdin/APE. Dev Cell 2005 Sep; 9 (3):389-402.
23. Jiang P, Enomoto A, JijiwRelated Articles Jiang P, Enomoto A, Jijiwa M, Kato T, Hasegawa T, Ishida M, Sato T, Asai N, Murakumo Y, Takahashi M.a M, Kato T, Hasegawa T, Ishida M, Sato T, Asai N, Murakumo Y, Takahashi M. An actin-binding protein Girdin regulates the motility of breast cancer cells. Cancer Res. 2008 Mar 1; 68 (5):1310-8.
24. Suzuki A, Lu J, Kusakai G, Kishimoto A, Ogura T, Esumi H. ARK5 is a tumor invasion- associated factor downstream of Akt signaling. Mol Cell Biol 2004 Apr; 24 (8):3526-35.
25. Ye M, Hu D, Tu L, Zhou X, Lu F, Wen B, Wu W, Lin Y, Zhou Z, Qu J. Involvement of PI3K/Akt signaling pathway in hepatocyte growth factor-induced migration of uveal melanoma cells. Invest Ophthalmol Vis Sci. 2008 Feb; 49 (2):497-504.
26. Shukla S, Maclennan GT, Hartman DJ, Fu P, Resnick MI, Gupta S. Activation of PI3K-Akt signaling pathway promotes prostate cancer cell invasion. Int J Cancer. 2007 Oct 1; 121 (7):1424-32
27. Tanno S, Mitsuuchi Y, Altomare DA, Xiao GH, Testa JR. AKT activation upregulates insulin-like growth factor I receptor expression and promotes invasiveness of human pancreatic cancer cells. Cancer Res 2001 Jan 15; 61 (2):589-93.
28. Jahn T, Seipel P, Urschel S, Peschel C, Duyster J. Role for the adaptor protein Grb10 in the activation of Akt. Mol Cell Biol. 2002 Feb; 22 (4):979-91.
29. Anai M, Shojima N, Katagiri H, Ogihara T, Sakoda H, Onishi Y, Ono H, Fujishiro M, Fukushima Y, Horike N, Viana A, Kikuchi M, Noguchi N, Takahashi S, Takata K, Oka Y, Uchijima Y, Kurihara H, Asano T. A novel protein kinase B (PKB)/AKT-binding protein enhances PKB kinase activity and regulates DNA synthesis. J Biol Chem. 2005 May 6; 280 (18):18525-35.
30. Hollestelle A, Elstrodt F, Nagel JH, Kallemeijn WW, Schutte M. Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. Mol. Cancer Res. 2007 Feb; 5 (2):195-201.
31. Van Dam PA, Vergote IB, Lowe DG, Watson JV, van Damme P, van der Auwera JC, Shepherd JH. Expression of c-erbB-2, c-myc, and c-ras oncoproteins, insulin-like growth factor receptor I, and epidermal growth factor receptor in ovarian carcinoma. J Clin Pathol. 1994 Oct; 47 (10):914-9.
32. Douglas DA, Zhong H, Ro JY, Oddoux C, Berger AD, Pincus MR, Satagopan JM, Gerald WL, Scher HI, Lee P, Osman I. Novel mutations of epidermal growth factor receptor in localized prostate cancer. Front Biosci. 2006 Sep 1; 11:2518-25.
33. Knobbe CB, Reifenberger G. Genetic alterations and aberrant expression of genes related to the phosphatidyl-inositol-3′-kinase/protein kinase B (Akt) signal transduction pathway in glioblastomas, Brain Pathol. 2003 Oct; 13 (4):507-18.
34. Hennessy BT, Smith DL, Ram PT, Lu Y, Mills GB. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 2005 Dec; 4 (12):988-1004.
35. Maira S.M., Galetic I., Brazil, D.P., Kaech, S., Ingley, E., Thelen, M., Hemmings, B.A. Carboxyl-terminal modulator protein (CTMP), a negative regulator of PKB/Akt and v-Akt at the plasma membrane. Science. 2001 Oct 12; 294 (5541):374-80.
36. Knobbe CB, Reifenberger J, Blaschke B, Reifenberger G. Hypermethylation and transcriptional downregulation of the Carboxyl-Terminal Modulator Protein gene in glioblastomas. J Natl Cancer Inst. 2004 Mar 17; 96 (6):483-6
37. Ono H, Sakoda H, Fujishiro M, Anai M, Kushiyama A, Fukushima Y, Katagiri H, Ogihara T, Oka Y, Kamata H, Horike N, Uchijima Y, Kurihara H, Asano T. Carboxy-terminal modulator protein induces Akt phosphorylation and activation, thereby enhancing antiapoptotic, glycogen synthetic, and glucose uptake pathways. Am J Physiol Cell Physiol. 2007 Nov; 293 (5):C1576-85.
38. Vlahos CJ, Matter WF, Hui KY, Brown RF. A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem. 1994 Feb 18; 269 (7):5241-8.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.149.243.32
論文開放下載的時間是 校外不公開

Your IP address is 3.149.243.32
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code