Responsive image
博碩士論文 etd-0804108-231134 詳細資訊
Title page for etd-0804108-231134
論文名稱
Title
WWOX蛋白藉由負調控GSK3β活性調控人類神經母細胞瘤SH-SY5Y之神經突形成
WW domain-containing oxidoreductase negatively regulates Glycogen Synthase Kinase 3β during neurite out growth in human neuroblastoma SH-SY5Y cells
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
75
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-23
繳交日期
Date of Submission
2008-08-04
關鍵字
Keywords
none
GSK3β, WWOX
統計
Statistics
本論文已被瀏覽 5726 次,被下載 0
The thesis/dissertation has been browsed 5726 times, has been downloaded 0 times.
中文摘要
WWOX (WW domain-containing oxidoreductase) 為一腫瘤抑制基因,且其功能在先前研究中與阿茲海默症Tau蛋白有關。Tau 為一種微管結合蛋白,其對於tubulin之聚合及微管穩定扮演重要的角色,而GSK3β藉由磷酸化來調控Tau蛋白。高度磷酸化之Tau蛋白會降低與tubulin之親和力,進而喪失微管之穩定性。藉由生物資訊的預測與分析,我們發現在WWOX的序列中具有三個與GSK3β結合域相似之區域FXXXLI/VXRLE,而利用免疫沈澱法證明WWOX會與GSK3β相結合,並由免疫螢光分析發現二具有colocalization之情形。進一步利用in vitro之pull down assay證明,WWOX藉由ADH/SDR domain與GSK3β相結合,並利用定點突變法確此結合區域。而在in vitro kinase assay的實驗中,可觀察到WWOX可藉由結合GSK3β而抑制Tau在Ser396及Ser404之磷酸化,此結果亦可在in vivo實驗中觀察到,因此WWOX對於GSK3β之調控可能參與在neurite outgrowth。在先前的MT formation assay的結果中顯示,經由GSK3β高度磷酸化之Tau蛋白會喪失Tau蛋白對於tubulin polarization之能力。結合上述結果,WWOX之功能可能參與於神經分化中。而有趣的是,在以維生素A(retinoic acid)誘導分化之SH-SY5Y的細胞中,隨著細胞分化的比例愈高,WWOX蛋白表現隨之升高,且磷酸化Ser396 Tau 之表現量則隨之下降。以RNAi 抑制WWOX的表現,可觀察到磷酸化Ser396 Tau蛋白之增加,且SH-SY5Y的分化減緩。進一步使用GSK3抑制劑Bio可促使SH-SY5Y細胞之分化,而過量表現GSK3β則會減低SH-SY5Y之分化。綜合以上結果,WWOX藉由調控GSK3β活性而減低Tau的高度磷酸化,而此可能包含在神經分化中促進neurite之outgrowth。
Abstract
WW domain-containing oxidoreductase WWOX, a putative tumor suppressor, has been suggested to be involved in the hyperphosphorylation of Alzheimer’s tau. Tau is a microtubule-associated protein which plays an important role in microtubule assembly and stability. GSK-3b regulates tau by phosphorylation as well as by regulating splice variance. Hyperphosphorylated tau has less affinity toward the microtubules and disrupting microtubule stability. By bioinformatics analysis, we found that WWOX has three GSK3β binding motifs, FXXXLI/VXRLE. The results of immunoprecipitation demonstrated that WWOX interacted physically with GSK3β, which was supported by the colocalization of WWOX and GSK3β in immunofluorescence study. Using in vitro GST pull down assay, we demonstrated that WWOX can bind directly to GSK3β through its ADH/SDR domain. The site-direct mutagenesis was performed to locate the GSK3β binding sequences within the ADH/SDR domain precisely. By in vitro kinase assay, we found that WWOX can inhibit Ser396 and Ser404 phosphorylation of Tau by GSK3β in a dose- and time- dependent manner, indicating that WWOX may be involved in regulating GSK3β activity in cells. It has been demonstrated that inhibition of GSK3β plays an essential role during neuron differentiation. By in vitro MT formation assay, we showed that GSK3β hyperphospohorylated Tau failed to promote tubulin polymerization. Together with the Tau hyperphosphorylation inhibited its function to promote microtubule formation and neurite outgrowth, we investigated the effect of WWOX in neuron differentiation. Interestingly, overexpression of WWOX enhanced the SH-SY5Y differentiation with or without retinoic acid treatment. SH-SY5Y cells increase expression of WWOX and decrease expression of pTau S396 as they differentiate in culture. RNAi-mediated knockdown of WWOX in RA-differentiated SH-SY5Y cells caused a decrease in neurite outgrowth. Furthermore, inhibition of GSK3 by Bio enhanced SH-SY5Y differentiation and overexpression of GSK3β caused a decrease in neurite outgrowth. We concluded that WWOX may be involved in regulating GSK3β activity to reduce the level of phosphorylated Tau that subsequently promoted the neurite outgrowth during neuron differentiation.
目次 Table of Contents
Table of Contents

1. 中文摘要............................................2
2. Abstract............................................3
3. Abbreviation........................................5
4. Introduction........................................6
5. Purpose............................................13
6. Materials and Methods..............................14
7. Results............................................22
8. Discussion.........................................30
9. References.........................................35
10. Figures............................................40
11. Appendix...........................................62
參考文獻 References
1. Bednarek AK, Laflin KJ, Daniel RL, Liao Q, Hawkins KA, Aldaz CM. WWOX, a novel WW domain-containing protein mapping to human chromosome 16q23.3-24.1, a region frequently affected in breast cancer. Cancer Res 60, 2140-5 (2000).
2. O'Keefe LV, Richards RI. Common chromosomal fragile sites and cancer: focus on FRA16D. Cancer Lett 232, 37-47 (2006).
3. Ludes-Meyers JH, Bednarek AK, Popescu NC, Bedford M, Aldaz CM. WWOX, the common chromosomal fragile site, FRA16D, cancer gene. Cytogenet Genome Res 100, 101-10 (2003).
4. Chen ST, Chuang JI, Cheng CL, Hsu LJ, Chang NS. Light-induced retinal damage involves tyrosine 33 phosphorylation, mitochondrial and nuclear translocation of WW domain-containing oxidoreductase in vivo. Neuroscience. 2005;130(2):397-407.
5. Chang NS, Hsu LJ, Lin YS, Lai FJ, Sheu HM. WW domain-containing oxidoreductase: a candidate tumor suppressor. Trends Mol Med. 2007 Jan;13(1):12-22. Epub 2006 Dec 4.
6. Mahajan NP, Whang YE, Mohler JL, Earp HS. Activated tyrosine kinase Ack1 promotes prostate tumorigenesis: role of Ack1 in polyubiquitination of tumor suppressor Wwox. Cancer Res. 2005 Nov 15;65(22):10514-23.
7. Aqeilan RI, Palamarchuk A, Weigel RJ, Herrero JJ, Pekarsky Y, Croce CM. Physical and functional interactions between the Wwox tumor suppressor protein and the AP-2gamma transcription factor. Cancer Res. 2004 Nov 15;64 (22) : 8256-61.
8. Sze CI, Su M, Pugazhenthi S, Jambal P, Hsu LJ, Heath J, Schultz L, Chang NS. Down-regulation of WW domain-containing oxidoreductase induces Tau phosphorylation in vitro. A potential role in Alzheimer's disease. J Biol Chem 279, 30498-506 (2004).
9. Yakicier MC, Legoix P, Vaury C, Gressin L, Tubacher E, Capron F, Bayer J, Degott C, Balabaud C, Zucman-Rossi J. Identification of homozygous deletions at chromosome 16q23 in aflatoxin B1 exposed hepatocellular carcinoma. Oncogene 20, 5232-8 (2001).
10. Yendamuri S, Kuroki T, Trapasso F, Henry AC, Dumon KR, Huebner K, Williams NN, Kaiser LR, Croce CM. WW domain containing oxidoreductase gene expression is altered in non-small cell lung cancer. Cancer Res 63, 878-81 (2003).
11. Aqeilan RI, Trapasso F, Hussain S, Costinean S, Marshall D, Pekarsky Y, Hagan JP, Zanesi N, Kaou M, Stein GS, Lian JB, Croce CM. Targeted deletion of Wwox reveals a tumor suppressor function. Proc Natl Acad Sci U S A 104, 3949-54 (2007).
12. Chen ST, Chuang JI, Wang JP, Tsai MS, Li H, Chang NS. Expression of WW domain-containing oxidoreductase WOX1 in the developing murine nervous system. Neuroscience 124, 831-9 (2004).
13. Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res. 2007 Apr-May;32(4-5):577-95.
14. Cohen P, Frame S. The renaissance of GSK3. Nat Rev Mol Cell Biol. 2001 Oct;2 (10) : 769-76..
15. Cohen P. The Croonian Lecture 1998. Identification of a protein kinase cascade of major importance in insulin signal transduction. Philos Trans R Soc Lond B Biol Sci. 1999;354:485–495.
16. Hughes K, Nikolakaki E, Plyte SE, Totty NF, Woodgett JR. Modulation of the glycogen synthase kinase-3 family by tyrosine phosphorylation. Embo J. 1993;12:803–808.
17. Doble BW, Woodgett JR. GSK-3: tricks of the trade for a multi-tasking kinase. J Cell Sci. 2003;116:1175–1186.
18. Meijer L, Flajolet M, Greengard P. Pharmacological inhibitors of glycogen synthase kinase 3. Trends Pharmacol Sci. 2004;25:471–480.
19. Thornton TM, Pedraza-Alva G, Deng B, Wood CD, Aronshtam A, Clements JL, Sabio G, Davis RJ, Matthews DE, Doble B, Rincon M. Phosphorylation by p38 MAPK as an alternative pathway for GSK3beta inactivation. Science. 2008 May 2;320(5876):667-70.
20. Hedgepeth CM, Deardorff MA, Rankin K, Klein PS. Regulation of glycogen synthase kinase 3beta and downstream Wnt signaling by axin. Mol Cell Biol. 1999 Oct;19(10):7147-57.
21. Franca-Koh J, Yeo M, Fraser E, Young N, Dale TC. The regulation of glycogen synthase kinase-3 nuclear export by Frat/GBP. J Biol Chem. 2002 Nov 15;277(46):43844-8. Epub 2002 Sep 9.
22. Chou HY, Howng SL, Cheng TS, Hsiao YL, Lieu AS, Loh JK, Hwang SL, Lin CC, Hsu CM, Wang C, Lee CI, Lu PJ, Chou CK, Huang CY, Hong YR. GSKIP is homologous to the Axin GSK3beta interaction domain and functions as a negative regulator of GSK3beta. Biochemistry. 2006 Sep 26;45(38):11379-89.
23. Ryves WJ, Harwood AJ. The interaction of glycogen synthase kinase-3 (GSK-3) with the cell cycle. Prog Cell Cycle Res. 2003;5:489–495.
24. Zhou FQ, Snider WD. GSK-3β and Microtubule Assembly in Axons.
25. Yoshimura T, Kawano Y, Arimura N, Kawabata S, Kikuchi A, Kaibuchi K. GSK-3beta regulates phosphorylation of CRMP-2 and neuronal polarity. Cell. 2005 Jan 14;120 (1) :137-49.
26. Forde JE, Dale TC. Glycogen synthase kinase 3: a key regulator of cellular fate (review). Cell Mol Life Sci. Aug;64(15):1930-44 (2007).
27. Bienz M. The subcellular destinations of APC proteins. Nat Rev Mol Cell Biol. 2002 May;3(5):328-38.
28. Zumbrunn J, Kinoshita K, Hyman AA, Näthke IS. Binding of the adenomatous polyposis coli protein to microtubules increases microtubule stability and is regulated by GSK3 beta phosphorylation. Curr Biol. 2001 Jan 9;11(1):44-9.
29. Zhou FQ, Zhou J, Dedhar S, Wu YH, Snider WD. NGF-induced axon growth is mediated by localized inactivation of GSK-3beta and functions of the microtubule plus end binding protein APC. Neuron. 2004 Jun 24;42(6):897-912.
30. Mi K, Johnson GV. The role of tau phosphorylation in the pathogenesis of Alzheimer's disease. Curr Alzheimer Res. 2006 Dec;3(5):449-63.
31. Caceres A, Kosik KS. Inhibition of neurite polarity by tau antisense oligonucleotides in primary cerebellar neurons. Nature 343, 461-463(1990).
32. Johnson GV, Stoothoff WH. Tau phosphorylation in neuronal cell function and dysfunction. Journal of Cell Science 117, 5721-5729 (2004)
33. Martín CP, Vázquez J, Avila J, Moreno FJ. P24, a glycogen synthase kinase 3 (GSK 3) inhibitor. Biochim Biophys Acta. 2002 Jan 2;1586(1):113-22.
34. Encinas M, Iglesias M, Liu Y, Wang H, Muhaisen A, Ceña V, Gallego C, Comella JX. Sequential treatment of SH-SY5Y cells with retinoic acid and brain-derived neurotrophic factor gives rise to fully differentiated, neurotrophic factor-dependent, human neuron-like cells. J Neurochem. 2000 Sep;75(3):991-1003
35. Lin YT, Cheng JT, Liang LC, Ko CY, Lo YK, Lu PJ. The binding and phosphorylation of Thr231 is critical for Tau's hyperphosphorylation and functional regulation by glycogen synthase kinase 3beta. J Neurochem. 2007 Oct;103 (2): 802-13. Epub 2007 Aug 6.
36. Goold RG, Gordon-Weeks PR. Microtubule-associated protein 1B phosphorylation by glycogen synthase kinase 3beta is induced during PC12 cell differentiation. J Cell Sci. 2001 Dec;114(Pt 23):4273-84.
37. Gompel M, Soulié C, Ceballos-Picot I, Meijer L.Expression and activity of cyclin-dependent kinases and glycogen synthase kinase-3 during NT2 neuronal differentiation. Neurosignals. 2004 May-Jun;13(3):134-43.
38. Mandell JW, Banker GA. A spatial gradient of tau protein phosphorylation in nascent axons. J Neurosci. 1996 Sep 15;16(18):5727-40.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.227.161.226
論文開放下載的時間是 校外不公開

Your IP address is 18.227.161.226
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code