Responsive image
博碩士論文 etd-0804109-044040 詳細資訊
Title page for etd-0804109-044040
論文名稱
Title
氧化鋅薄膜成長於PET基板上並應用於 壓電換能器之研究
The fabrication of piezoelectric transducers by depositing ZnO films on PET substrates
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-15
繳交日期
Date of Submission
2009-08-04
關鍵字
Keywords
壓電換能器、氧化鋅
ZnO, piezoelectric transducers
統計
Statistics
本論文已被瀏覽 5708 次,被下載 3052
The thesis/dissertation has been browsed 5708 times, has been downloaded 3052 times.
中文摘要
本論文利用射頻磁控濺鍍技術沉積氧化鋅薄膜於ITO/PET基板上,並利用此結構,製作壓電換能器;藉由改變不同的濺鍍功率、工作壓力和氣體比例來沉積高品質的氧化鋅壓電薄膜。經由掃描式電子顯微鏡和X 光繞射儀的分析得知,在工作壓力15 mTorr、濺鍍功率75 W、氧氣濃度60 %,可獲得晶粒緻密和具有高c 軸優選的晶向;利用奈米壓痕機量測得知,PET之楊氏係數為6.62 GPa。設定換能器共振頻率100 Hz,並由PET的楊氏係數和懸臂樑振動理論,可計算出所需元件之振動長度為0.989 cm及氧化鋅沉積面積為1.4835 cm2。最後再加上銅電極於氧化鋅上,製作成壓電換能器,因銅具有低成本和整流效果,適合應用於壓電換能器之製作。
本研究製作完成的壓電換能器外加0.57 g的質量塊,以增加懸臂樑擺動振幅。經由振動儀輸入100 Hz的振動能,並利用示波器量測輸出電量;由結果得知,開路電壓隨著ZnO厚度之增加而增加,在964.65 nm的Zno厚度下,測得開路電壓為1.87 V。元件經由1N5711蕭特基二極體製作的橋式電路整流,以及37 nF電容濾波,於負載電阻5 MΩ時,可獲得最大發電功率為0.0697μW/cm2;可計算出氧化鋅壓電換能器之內阻為4.3185 MΩ。
Abstract
In this thesis, piezoelectric transducers were fabricated by depositing ZnO films on PET substrates. The optimal deposition parameters for ZnO films are sputtering pressure of 15 mTorr, RF power of 75 W and oxygen concentration of 60 %, which are determined by scanning electron microscopy and X-ray diffraction analysis. PET substrates of Young’s modulus of 6.62 GPa are obtained by Nano Indenter. To fabricate a transducer with resonance frequency of 100 Hz, the cantilever length of 0.979 cm and vibration area of 1.4835 cm2 are calculated by Cantilever Vibration Theory. Copper layer was attached to ZnO/ITO/PET structure to form piezoelectric transducers.
A mass of 0.57 g was attached to the transducer to increase the vibration amplitude. A vibration source of 100 Hz was provided to the piezoelectric transducer and then the experimental results were obtained by oscilloscope. The optimal thickness of ZnO films is 964.65 nm, at which the open circuit voltage is 1.87 V. A bridge rectifier was constructed by Shottky diode with product number 1N5711 along with a capacitor of 37 nF. After rectifying and filtering of device output, the maximum power of 0.0697μW/cm2 was generated with the load resistance of 5 MΩ and the internal resistance of 4.3185 MΩ.
目次 Table of Contents
誌謝 V
摘要 VII
ABSTRACT IX
目錄 XI
圖目錄 XIII
表目錄 XV
第一章 緒論 1
1-1 研究背景與動機 1
1-2 壓電換能器簡介 4
1-3 研究目的 7
第二章 理論分析 9
2-1 晶體學 9
2-1-1晶體對稱性 10
2-1-2氧化鋅的結構與特性 11
2-2 壓電理論 12
2-3 壓電換能器原理 15
2-4 薄膜沉積原理 19
2-5 反應性射頻磁控濺鍍原理 22
2-5-1輝光放電 22
2-5-2射頻濺射 22
2-5-3磁控濺射 23
2-5-4反應性濺射 25
2-6 全波整流濾波電路 26
2-6-1橋式整流電路工作原理 27
2-6-2電容濾波工作原理 28
第三章 實驗 30
3-1 射頻磁控濺鍍與壓電層沉積 30
3-2 壓電換能器製作流程 32
3-3 物理性質量測 34
3-3-1 X光繞射分析 34
3-3-2掃描式電子顯微鏡SEM分析 36
3-3-3奈米壓痕檢測系統 37
3-3-4膜厚量測 38
3-4電性量測 38
3-4-1金屬半導體接觸之IV量測 38
3-4-2換能器開路電壓量測 39
3-4-3換能器不同負載電壓量測 40
3-4-4換能器整流濾波輸出負載電壓量測 42
3-4-5雷射位移計量測輸入振動源 43
第四章 結果與討論 45
4-1壓電層的探討 45
4-1-1濺鍍功率對氧化鋅薄膜的影響 45
4-1-2濺鍍壓力對氧化鋅薄膜的影響 48
4-1-3氧氣濃度對氧化鋅薄膜的影響 50
4-1-4不同氧化鋅厚度對輸出電壓之影響 53
4-2換能器輸出量測討論 55
4-2-1 1N5711對輸出電壓的影響 55
4-2-2電極對輸出電壓的影響 55
4-2-3不同負載對輸出電量的影響 56
4-3具整流濾波系統之壓電換能器 59
第五章 結論與展望 60

圖目錄
圖1- 1 電磁式微發電機的剖面示意圖 3
圖1- 2 壓電換能器結構圖 8
圖2- 1 氧化鋅(ZnO)結構 12
圖2- 2 壓電換能器受力生電概念圖:(a)未受力,(b)受到張應力及(c)受到壓縮應力 14
圖2- 3 (a)懸臂樑系統及(b)質量阻尼系統 15
圖2- 4 懸臂樑等效電路系統 16
圖2- 5 加入壓電薄膜之懸臂樑等效電路系統 17
圖2- 6 濺鍍參數對沉積薄膜之影響 21
圖2- 7 平面型圓形磁控之結構圖 24
圖2- 8 平面磁控結構及電子運動路徑 24
圖2- 9 反應性濺射之模型 26
圖2- 10 全波整流濾波電路 26
圖2- 11 輸入正半週橋式整流器工作原理圖 28
圖2- 12 輸入負半週橋式整流器工作原理圖 28
圖2- 13 整流濾波電路 29
圖3- 1 實驗流程圖 30
圖3- 2 (a)利用耐熱膠帶定義振動面積0.989×1.5cm2、(b)將氧化鋅沉積於ITO上、(c)將耐熱膠帶去除及(d)將銅箔貼紙貼於氧化鋅上 33
圖3- 3 場發射型掃描式電子顯微鏡 36
圖3- 4 奈米壓痕機 37
圖3- 5 下針示意圖 38
圖3- 6 夾具固定元件圖 39
圖3- 7 量測示意圖 40
圖3- 8 量測儀器圖 40
圖3- 9 不同負載電阻量測圖 41
圖3- 10 不同負載電阻量測示意圖 41
圖3- 11 電路連接實體圖 42
圖3- 12 整流濾波輸出負載電壓量測示意圖 43
圖3- 13 輸出100 Hz振動源位移圖 43
圖3- 14 施加質量塊換能器位移圖 44

圖4- 1 不同濺鍍功率之SEM圖:(a)50W、(b)75W、(c)100W、(d)125W及(e)150W 46
圖4- 2 不同濺鍍功率之XRD圖:(a)未位移之XRD圖及(b)X軸和Y軸皆位移的XRD圖 47
圖4- 3 不同工作壓力之SEM圖:(a) 10 mTorr、(b) 15 mTorr、(c) 20 mTorr及(d) 25 mTorr。 48
圖4- 4 不同工作壓力之XRD圖:(a)未位移之XRD圖及(b)X軸和Y軸皆位移的XRD圖 49
圖4- 5 不同壓力所沉積的厚度與沉積率 50
圖4- 6 不同氧氣濃度之SEM圖:(a)50%、(b)60%、(c)70%及(d)80% 51
圖4- 7 不同氧氣濃度之XRD圖:(a)未位移之XRD圖及(b)X軸和Y軸皆位移的XRD圖 52
圖4- 8 不同氧氣濃度所沉積的氧化鋅厚度與沉積率 53
圖4- 9 不同氧化鋅厚度製作的壓電換能器所發出之電壓波形 54
圖4- 10 不同氧化鋅厚度製作的壓電換能器所發出之最大電壓值 54
圖4- 11 1N5711的電壓電流圖 55
圖4- 12 Cu與ZnO接觸之 I-V量測圖 56
圖4- 13 不同負載電壓量測圖(1 M-5 MΩ) 57
圖4- 14 不同負載電壓量測圖(6 M-10 MΩ) 57
圖4- 15 不同負載之最大負載電壓和功率 58
圖4- 16 壓電換能器經過整流濾波後,輸出負載波形圖。 59
圖5- 1 發電系統之仿真於風振動之現象 60

表目錄
表 1 2005~2020年世界風力發電和電力需求增長的預測 2
表 2 不同壓電材料特性表 6
表 3 不同電極材料特性表 6
表 4 七大晶系與壓電晶體點群關聯 10
表 5 濺鍍參數表 31
表 6 氧化鋅(ZnO)的JCPDS Data 35
表 7 二氧化鋅(ZnO2)的JCPDS Data 35
參考文獻 References
參考文獻
[1] D.M. Rowe, D.V. Morgan, and J.H. Kiely, “Low cost miniature
thermoelectric generator”, Electronic Letter 27, pp. 2332-2334 (1991).
[2] C.B. Williams, and R.B. Yates, “Analysis of a micro-electric
generator for Microsystems”, The 8th International Conference on
Solid-State Sensors and Actuators, Vol. 1, pp. 369-372 (1995).
[3] C.B. Williams, and R.C. Woods and R.B. Yates, “Feasibility study of
a vibration powered micro-electric generator”, Compact Power
Sources (Digest No. 96/107), IEE Colloquium, pp. 7/1-7/3 (1996).
[4] R. Amirtharajah and A. P. Chandrakasan, “Self-powered signal
processing using vibration-based power generation,” IEEE Journal of Solid-State Circuits, vol. 33, no. 5, pp. 687-695 (1998).
[5] C. B. Williams, C. Shearwood, M. A. Harradine, P. H. Mellor, T.S.Birch, and R. B. Yates, “Development of an electromagnetic
micro-generator,” IEE Porc.-Circuits Devices System, vol. 148, no. 6,pp. 337-342 (2001).
[6] W. J. Li, Z. Wen, P. K. Wong, G. M. H. Chan, P. H. W. Leong, “A microchined vibration-induced power generator for low power
sensors of robotic systems”, The 8th International Symposium on
Robotics with Application, June 16-21 (2000).
[7] W. J. Li, T. C. H. Ho, G. M. H. Chan, P. H. W. Leong, and H. Y. Wong, “Infrared signal transmission by a laser-micromachined
vibration-induced power generator,” Proc. 43rd IEEE Midwest
Symposium on Circuits and Systems, pp. 236-239 (2000).
[8] P. Glynne-Jones, S. P. Beeby, and N.M. White, “ Toward
piezoelectric vibration-powered microgenerator”, IEE Proc.-Sci.
Meas. Technol, vol. 148, n. 2, pp. 68-72 (2001).
[9] J. Y. Kang, H. J. Kim, J. S. Kim, T. S. Kim, “Optimal design of
piezoelectric cantilever for a micro power generator with
microbubble”, The 2nd Annual International IEEE-EMBS Special
Topic Conference on Microtechnologies in Medicine & Biology, pp.424-427 (2002).
[10] Sunghwan Kim, “Low power energy harvesting with piezoelectric generators”, Doctoral Dissertation, University of Pittsburgh, (2002)12.
[11] Rajendra K. Sood, “Piezoelectric Micro Power Generator (PMPG): A MEMS-based Energy Scavenger”, Graduate Thesis, Massachusetts Institute of Technology, (2003)9.
[12]


Hua-Bin Fanga, Jing-Quan Liu, Zheng-Yi Xu, Lu Dong,Li Wang, Di Chen, Bing-Chu Cai, Yue Liu, “Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting”, Microelectronics Journal , (2006)7.
[13] 林盈旭,“壓電式振動微發電機之設計與製作”,國立中興大學機械工程學系碩士論文,(2002)。
[14] K. S. Kao, C. C. Cheng and Y. C. Chen, “Synthesis of C-axis-oriented aluminum nitride films by reactive RF magnetron sputtering for surface acoustic wave”, Jpn. J. Appl. Phys, 40 , (2001).
[15] K.S. Kao, C.C. Cheng and Y.C. Chen, IEEE Trans. Ultrason. Ferroelectr. & Freq. Control, 49(3) , “ Synthesis and surface acoustic wave properties of AlN films deposited on LiNbO/sub3/ substrates”, (2002)3.
[16] K.S. Kao, C.C. Cheng, Y.C. Chen and Y.H. Lee, “The characteristics of surface acoustic waves on AlN/LiNbO3 substrates”, Applied Physics A: Materials Science & Processing, (76) (2003) 1125.
[17] D. H. Cho, D. Y. Kim, B. H. Kim J. P. Jung, J. S. Park, “Properties of AlN films grown by two-step deposition and characteristics of AlN-FBAR devices”, IEEE Trans. Ultrason. Ferroelectr. & Freq. Control, 49(3) (2004) 1702.
[18] K.S. Kao, C.C. Cheng, C.J. Chung, and Y.C. Chen, IEEE Tranactions on Ultrasonics, Ferroelectrics and Frequency Control, 52(3), (2005) 503.
[19] C. J. Chung, K. S. Kao, C. C. Cheng, and Y. C. Chen, “Proton-exchanged 36° Y-X LiTaO3 waveguides for surface acoustic wave”, IEEE Trans. on Ultrason. Ferroelect. & Freq. Contr., 53, (2006) 502.
[20]



[21] Jin-Bock Lee, Jun-Phil Jung, Myung-Ho Lee, Jin-Seok Park, “Effects of bottom electrodes on the orientation of AlN films and the frequency responses of resonators in AlN-based FBARs”, Thin Solid Films, 447 –448, (2004) 610–614.
P. A. Tarazaga, J. R. Farmer, D. J. Inman, “ Effect of Strain Nodes and Electrode Configuration on Piezoelectric Energy Harvesting From Cantilevered Beams”, Journal of Vibration and Acoustics, (2009) Vol. 131 / 011010-1–Vol. 131 / 011010-11.
[22] K. H. Yoon and J. Y. Cho, “Photoluminescence characteristics of zinc oxide thin films prepared by spray pyrolysis technique,” Mater. Res. Bull., vol. 35, pp. 39-46, 2000.
[23] Z. Fu, B. Lin and J. Zu, “Photoluminescence and structure of ZnO films deposited on Si substrates by metal-organic chemical vapor deposition,” Thin Solid Films, vol. 402, pp. 302-306, 2002.
[24] J. Ye, S. Gu, S. Zhu, T. Chen, L. Hu, F. Qin, R. Zhang, Y. Shi and Y. Zheng, “The growth and annealing of single crystalline ZnO films by low-pressure MOCVD,” J. Crystal Growth, vol. 243, pp. 151-156, 2002.
[25] Y. Nakanishi, A. Miyake, H. Kominami, T. Aoki, Y. Hatanaka and G. Shimaoka, “Preparation of ZnO thin films for high-resolution field emission display by electron beam evaporation,” Appl. Surf. Sci., vol. 142, pp. 233-236, 1999.
[26] X. H. Li, A. P. Huang, M. K. Zhu, Sh. L. Xu, J. Chen, H. Wang, B. Wang, B. Wang and H. Yan, “Influence of substrate temperature on the orientation and optical properties of sputtered ZnO films,” Mater. Lett., vol. 75, pp. 4655-4659, 2003.
[27] W. Water and S. Y. Chu, “Physical and structural properties of ZnO sputtered films,” Mater. Lett., vol. 55, pp. 67-72, 2002.
[28] S. H. Bae, S. Y. Lee, H. Y. Kim and S. Im, “Effects of post-annealing treatment on the light emission properties of ZnO thin films on Si,” Opt. Mater., vol. 17, pp. 327-330, 2001.
[29] Y. G. Wang, S. P. Lau, X. H. Zhang, H. W. Lee, S. F. Yu, B. K. Tay and H. H. Hng, “Evolution of visible luminescence in ZnO by thermal oxidation of zinc films,” Chem. Phys. Lett., vol. 375, pp. 113-118, 2003.
[30] K. Sakurai, M. Kanehiro, K. Nakahara, T. Tanabe and S. Fujita, “Effects of oxygen plasma condition on MBE growth of ZnO,” J. Crystal Growth, vol. 209, pp. 522-525, 2000.
[31] D. G. Baik and S. M. Cho, “Application of sol-gel films for ZnO/n-Si junction solar cells,” Thin Solid films, vol. 354, pp. 227-231, 1999.
[32] P. Nunes, D. Costa, E. Fortunato and R. Martins, “Performances presented by zinc oxide thin films deposited by r.f. magnetron sputtering,” Vacuum, vol. 64, pp. 293-297, 2002.
[33] Y. Igasaki and H. Saito, “The effects of Zinc diffusionon the electrical and optical properties of ZnO:Al films prepared by RF reactive sputtering,” Thin Solid Films, vol. 199, pp. 223-230, 1991.
[34] M.T. Young and S.D. Keun, “Effects of rapid thermal annealing on the morphology and electrical properties of ZnO/In Films,” Thin Solid Films, vol. 410, pp. 8-13, 2002.
[35] 吳朗,“電子陶瓷:壓電陶瓷”,全欣資訊圖書公司,(1994)7
[36] 莊達人,“VLSI製造技術”,高立圖書股份有限公司,1995年。
[37] 田民波,“薄膜技術與薄膜材料”,五南書局,(2007)
[38] J. A. Thornton, “Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings,” J. Vac. Sci. Technol., vol. 11, pp. 666-698, 1974.

[39] 施敏著,張俊彥譯,”半導體元件之物理與技術”,儒林,(1990)425.
[40] R. W. Berry, P. M. Hall and M. T. Harris, “Thin Film Technology”, van Nostrand Reinhold, 1980, 201.
[41] J. L. Vossen and W. Kern, “Thin Film Process”, Academic Press, 1991, 134.
[42] E. Janczak-Bienk, H. Jensen and G. Sorensen, “The Influence of the Reactive Gas Flow on the Properties of AlN Sputter-Deposited Films”, Mater. Sci. and Eng. A, vol. 140, pp.696-701, 1991.
[43] 王宏灼,”反應性射頻濺鍍法成長氮化鋁薄膜之研究”,國立中山大學電機工程研究所碩士論文,(1995)。
[44] 蔡家龍,”製程參數對濺射沉積氮化鋁薄膜之影響”,國立中山大學電機工程研究所碩士論文,(2000)。
[45] 歐天凡,”沉積條件對氮化鋁薄膜壓電係數及機電耦合係數之影響”,國立中山大學電機工程研究所碩士論文,(2004)。
[46] Adel S. Sedra and Kenneth C. Smith, “Microelectronic Circuits”, Oxford University Press, (2004),
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code