Responsive image
博碩士論文 etd-0804109-122205 詳細資訊
Title page for etd-0804109-122205
論文名稱
Title
藉硫化、氟化、氫化改善以原子層沉積法在砷 化鎵上備製之二氧化鈦
Characterization of Sulfur、Fluorine and Hydrogen Passivation on Titanium Oxide prepared by Atomic Layer Deposition on Gallium Arsenide
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
107
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-20
繳交日期
Date of Submission
2009-08-04
關鍵字
Keywords
原子層沉積法、二氧化鈦、砷化鎵
TiO2, GaAs, ALD
統計
Statistics
本論文已被瀏覽 5732 次,被下載 1318
The thesis/dissertation has been browsed 5732 times, has been downloaded 1318 times.
中文摘要
由於三五族半導體砷化鎵(GaAs)具有高的電子遷移率,所以被廣泛應用在高速元件上。另外因為TiO2與GaAs擁有良好的晶格匹配特性以及高的介電常數,所以我們選擇TiO2作為閘極氧化層薄膜。
GaAs因其不穩定的原生氧化層(native oxide)使其擁有高的界面能態密度(interface state density, Dit)而影響界面品質,造成C-V 曲線有拉伸(stretch-out)的現象以及高的漏電流。利用硫化銨((NH4)2Sx)水溶液對GaAs 進行表面硫化處理(S-GaAs)可以有效去除原生氧化層以及填補GaAs表面懸鍵,使其界面品質大幅改善。
另外利用來自液相沈積法(Liquid Phase Deposition)生長SiO2 (LPD-SiO2)溶液中的氟離子可鈍化ALD-TiO2薄膜晶界上之懸鍵及半導體表面,故在漏電流方面可大為改善。
另一種鈍化ALD-TiO2薄膜的方法為金屬熱處理法(post-metallization annealing (PMA))。利用鋁和存在於ALD-TiO2的氫氧根(hydroxyl)作用而產生的活性氫離子(active hydrogen)進入TiO2薄膜以及GaAs表面進行鈍化作用,有效改進漏電流以及界面品質。
Abstract
Due to the high electron mobility compared with Si, III-V compound semiconductors (GaAs) has been applied widely for high-speed devices. The titanium oxide (TiO2) has not only has high dielectric constant but has well lattice match with GaAs substrate. Therefore, the high-k material TiO2 was chosen to be the gate oxide in this study.
The major problem of III-V compound semiconductors is known to have poor native oxide on it and leading to the Fermi level pinning at the interface between oxide and semiconductor. The C-V stretch-out phenomenon can be observed and the leakage current is high. The surface passivation of GaAs with (NH4)2Sx treatment (S-GaAs) can prevent it from oxidizing after cleaning and improve the interface properties.
In order to passivate the grain boundary of polycrystalline ALD-TiO2 film and the interface state, the fluorine from liquid-phase- deposited SiO2 solution can achieve the goal effectively.
In addition, the post-metallization annealing (PMA) is another efficiency way to improve the ALD-TiO2 film quality. The mechanism of PMA process is the reaction between the aluminum contact and hydroxyl groups existed on TiO2 film surface. Then the active hydrogen is produced to diffuse through the oxide and passivate the oxide traps.
目次 Table of Contents
Chapter 1
Introduction 1
1-1 Developments in integrate circuits 1
1-2 Motivation for high-k materials deposited on compound semiconductor 2
1-3 Properties of TiO2 3
1-4 Drawback of TiO2 for electric applications 4
1-5 GaAs properties as compared with silicon 5
1-6 Comparisons of TiO2 deposition methods 6
1-7 Advantages of ALD system 6
1-8 Motivation of fluorinated ALD-TiO2 on (NH4)2Sx treated GaAs 7
1-9 Mechanism of GaAs with sulfur treatment 9
1-10 Motivation of PMA-ALD-TiO2 on (NH4)2Sx treated GaAs 9
Chapter 2
Experiment 18
2-1 Titanium oxide prepared by Deposition system of ALD 18
2-2 Properties of Ti metalorganic precursor 19
2-3 Silicon oxide prepared by LPD 19
2-3-1 Deposition system 19
2-3-2 Mechanisms of LPD-SiO2 20
2-3-3 Preparations of deposition solutions 20
2-4 Deposition procedures 22
2-4-1 GaAs wafer cleaning and sulfidation procedures 22
2-4-2 Aluminum metal and In-Zn alloy cleaning processes 22
2-4-3 Growth Parameters of ALD-TiO2 films 23
2-4-4 Deposition of LPD-SiO2 on ALD-TiO2 thin film 23
2-4-5 Preparation of PMA-ALD-TiO2 thin film 23
2-4-6 Electrodes fabrication 24
2-4-7 Experiment Procedures 24
2-5 Characterization 24
2-5-1 Physical properties 24
2-5-2 Chemical properties 25
2-5-3 Electrical properties 25
Chapter 3
Results and Discussion 34
3-1 Characteristics of ALD-TiO2 film on GaAs substrate 34
3-1-1 Thickness of ALD-TiO2 film as a function of deposition cycle 34
3-1-2 SEM morphologies of 200 and 400-cycle ALD-TiO2 film on GaAs as a function of deposition temperature 34
3-1-3 XRD spectra of TiO2 film as a function of growth temperature 35
3-1-4 Stoichiometry of TiO2 film as a function of growth temperature 37
3-1-5 Electrical properties of ALD-TiO2 film on GaAs as a function of deposition temperature 38
3-1-5-1 Leakage current density of 200-cycle ALD-TiO2 film on GaAs as a function of deposition temperature 38
3-1-5-2 Leakage current density of 400-cycle ALD-TiO2 film on GaAs as a function of deposition temperature 39
3-1-5-3 C-V characteristics of 200 and 400-cycle ALD-TiO2 film on GaAs as a function of deposition temperature 39
3-1-5-4 Tentative Summary 40
3-2 Improvement of Electrical Characteristics by (NH4)2Sx Treatment 40
3-2-1 Electric Characteristics of ALD-TiO2 film on GaAs as a function of different treat times of (NH4)2Sx Treatment 41
3-2-2 Tentative Summary 42
3-3 Characteristics of fluorine passivated ALD-TiO2 film on (NH4)2Sx treated GaAs 43
3-3-1 Properties of LPD-SiO2/ALD-TiO2 film on S-GaAs substrate 43
3-3-2 Electrical characteristics of fluorine passivated 400 -cycle ALD-TiO2 film at deposition temperature 400 oC on S-GaAs 44
3-3-3 Electrical characteristics of fluorine passivated 200 -cycle ALD-TiO2 film at deposition temperature 400 oC on S-GaAs 46
3-3-4 SIMS and ESCA depth profiles of LPD-SiO2/ ALD-TiO2/S-GaAs structure 46
3-3-5 Tentative Summary 47
3-4 Electrical characteristics of fluorine passivated 400-cycle ALD-TiO2 film at the depostion temperature 425 oC on S-GaAs 48
3-5 Characteristics of post-metallization annealed 400-cycle ALD-TiO2 film at the depostion temperature 425 oC on S-GaAs 50
3-5-1 I-V characteristics of PMA-400-cycle ALD-TiO2 at the depostion temperature 425 oC on S-GaAs with different PMA temperatures 50
3-5-2 C-V characteristics of PMA-400 -cycle ALD-TiO2 at the depostion temperature 425 oC on S-GaAs with different PMA temperatures 51
Chapter 4
Conclusions 75
References 77
參考文獻 References
[1] D.J. Frank, “Power Constrained CMOS Scaling Limits”, IBM J. of Res. and Dev. Vol. 46, No. 2/3, March/May 2002.
[2] Scott Thompson, Paul Packan, Mark Bohr, “MOS Scaling: Transistor Challenges for the 21st Century”, Intel Technology Journal Q3’98.
[3] Shekhar Borkar, “Design and Challenges of Technology Scaling”, IEEE MICRO 19
[4] Robert Chau, Mark Doczy, Brian Doyle, Suman Datta, Gilbert Dewey, Jack Kavalieros, Ben Jin, Matthew Metz,Amlan Majumdar, and Marko Radosavljević, “Advanced CMOS Transistors in the Nanotechnology Era for High-Performance, Low-Power Logic Applications”, 7 th International Conference On Solid State and Integrated Circuit Technology (ICSICT), 2004.
[5] S.-H. Lo, D. A. Buchanan, Y. Taur, and W. Wang, “Quantum-mechanical modeling of electron tunneling current from the inversion layer of ultra-thin-oxide nMOSFETs,” IEEE Electron Device Lett., vol.18, p.209 (1997).
[6] R. Chou, ICSTCT 2005 Presentation
[7] R. Chau, et al., in Extended Abstract of International Workshop on Gate Insulator, p. 124, 2003.
[8] R. Chau, et al., in Proceedings of AVS 5th International Conference on Microelectronics and Interfaces, p. 3, 2004.
[9] R. Chau, et al., IEEE Electron Device Letters, to be published in June 2004.
[10] T. Ghani, et al., IEDM Tech. Dig., p. 978, 2003.
[11] S. Thompson, et al., IEEE Electron Device Letters, vol. 25, p. 191, 2004.
[12] S. Datta, et al., IEDM Tech. Dig., p. 653, 2003.
[13] B. Jin, et al., to be presented in SiGe: Materials, Processing, and Devices at the ECS Meeting in Honolulu, Hawaii in Oct. 2004.
[14] R. Chau, et al., in Proceedings Int. Conf. on Solid State Devices & Materials, Nagoya, Japan, p. 68, 2002.
[15] M. Radosavljević, et al., Appl. Phys. Lett., vol. 83, p. 2435, 2003.
[16] A. Javey, et al., IEDM Tech. Dig., p. 741, 2003.
[17] L.J. Lauhon, et al., Nature, vol. 420, p. 57, 2002.
[18] Y. Cui, et al. Nano Lett., vol. 3, p. 149, 2003.
[19] T. Ashley, et al., IEDM Tech Digest, p. 751, 1997.
[20] Y. Royter, et al., IEDM Tech. Digest, p. 731, 2003.
[21] Y. H. Lee, K. K. Chan, and M. J. Brady, “Plasma enhanced chemical vapor deposition of TiO2 in microwave-radio frequency hybrid plasma reactor,” J. Vac. Sci. & Technol., vol. 13, pp. 596-601, 1995.
[22] G. V. Samsonov: The Oxide Handbook, (IFI/Plenum, New York), p. 316, 1973.
[23] J. Yan, D. C. Gilmer, S. A. Campbell. W. L. Gladfelter, and R. G. Schmid, “Structural and electrical characterization of TiO2 grown from titanium tetrakis-isopropoxide (TTIP) and TTIP/H2O ambients,” J. Vac. Sci. & Technol., vol. B14, pp. 1706-1711, 1996.
[24] M. A. Butl Properties of TiO2er, and D. S. Ginley, “Principles of photoelectrochemical solar-energy conversion,” J. Mater. Sci., vol. 15, pp 1-19, 1980.
[25] T. Carlson, and G. L. Griffin, “Photo oxidation of methanol using V2O5/TiO2 and MoO3/TiO2 surface oxide monolayer catalysts,” J. Phys. Chem., vol. 90, pp.5896-5900, 1986.
[26] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Optical characterization of SiO2-TiO2 thin-film with graded refractive-index profiles,” J. Jpn. Inst. Metals, vol. 62, pp. 1069-1074, 1998.
[27] X. R. Wang, H. Masumoto, Y. Someno, and T. Hirai, “Helicon plasma deposition of a TiO2/SiO2 multilayer optical filter with graded refractive-index profiles,” Appl. Phys. Lett., vol. 72, pp. 3264-3266, 1998.
[28] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin-film by PECVD for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[29] K. Hara, K. Sayama, Y. Ohga, A. Shinpo, S. Suga, and H. Arakawa, “A coumarin-derivative dye-sensitized nanocrystalline TiO2 solar-cell having a high solar-energy conversion efficiency up to 5.6-percent” Chem. Commun., pp. 569-570, 2001.
[30] A. Bahtat, M. Bouderbala, M. Bahtat, M. Bouazaoui, J. Mugnier, and M. Druetta, “Structural characterization of Er3+ doped sol-gel TiO2 planar optical wave-guides” Thin Solid Film, vol. 323, pp. 59-62, 1998.
[31] N. Goutev, Z. S. Nickolov, and J. J. Ramsden, “Wave-guide Raman-Spectroscopy of Si(Ti)O2 thin-film with grating coupling,” J. Raman Spectrosc., vol. 27, pp. 897-900, 1996.
[32] S. D. Mo, and W. Y. Ching, “Electronic and optical-properties of three phases of titanium-dioxide - rutile, anatase and brookite,” Phys. Rev. B, vol. 51, pp. 13023-13032, 1995.
[33] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 film on structural and optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[34] A. L. Linsebigler, G. Q. Lu, and J. T. Yates, “Photocatalysis on TiO2 surfaces - principles, mechanisms, and selected results,” Chem. Rev., vol. 95, pp. 735-758, 1995.
[35] H. Tang, K. Prasad, R. Sanjines, P. E. Schmid, and F. Levy, “Electrical and optical-properties of TiO2 anatase thin-film,” J. Appl. Phys., vol. 75, pp. 2042-2047, 1994.
[36] N. Daude, C. Goutm, and C. Jouanin, “Electronic band structure of titanium dioxide,” Phys. Rev. B, vol. 15, pp. 3229-3235, 1977.
[37] G. S. Brady, and H. R. Clauser: Materials Handbook, 13th ed. (McGraw-Hill, New York 1991)
[38] G. K. Boschloo, A. Goossens, and J. Schoonman, “Investigation of the potential distribution in porous nanocrystalline TiO2 electrodesby electrolyte electroreflection,” J. Electroanalytical Chem., vol. 428, pp. 25-32, 1997.
[39] M. Kadoshima, M. Hiratani, Y. Shimamoto, K. Torii, H. Miki, S. Kimura and T. Nabatame, “Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp.224-228, 2003.
[40] National Institute of Standards and Technology, Phase Equilibrium Diagrams, ver.2.1, The American Ceramic Society, Westerville, 1998, Fig. 4258.
[41] J. M. Criado, C. Real, and J. Soria, “Study of mechanochemical phase transformation of TiO2 by EPR effect of phosphate,” Solid State Ionics, vol. 32, pp. 461-465, 1989.
[42] R. D. Shannon, and J. A. Pask, J. Am. Ceram. Soc., vol. 48, p. 391, 1965.
[43] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics”, IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997.
[44] J. Robertson, “Electronic structure and band offsets of high dielectric constant gate oxides,” MRS Bulletin Mar, 217 (2002).
[45] K. Matsuo, K. Nakajima, S. Omoto, S. Nakamura, A. Yagishia, G. Minamihaba, H. Yano, and K. Suguro, “Low leakage TiO2 gate insulator formed by ultra-thin TiN deposition and low temperature oxidation,” Jpn. J. Appl. Phys., vol. 39, pp. 5794-5799, 2000.
[46] M. Kadoshima, M. Hiratani, Y. Shimamoto, K.Torii, H. Miki, S. Kimura, and T. Nabatame,“Rutile-type TiO2 thin film for high-k gate insulator,” Thin Solid Film, vol. 424, pp. 224-228, 2003.
[47] R. Williams, “Modern GaAs Processing Method”, ch.1 Boston London, Artech House, 1990.
[48] M. G. Kang, S. H. Sa, H. H. PARK, k. s. Suh, and K. H. Oh, “The characterization of etched GaAs surface With HCl or H3PO4 solutions, “Thin Solid Films, Vol. 308, p.634, 1997.
[49] L. Majumdar and P. Chattopadhyay, “Effect of interface states on the DC characteristics of short-channeal metal-semiconductor field-effect transistor,” Applied Surface Science, Vol. 119, p.369, 1997.
[50] R. Singh and C. M. Snowden, “A charge-control HEMT model incorporating deep-level effect, “Solid-State Electronic, Vol. 43, p473, 1999.
[51] S. Takamiya, M. Harayama, T. Sugimura, T. Tsuzuku, T. Taya, K.Iiyama and S. Hashimoto, “Reverse currents of schottky gates of Ⅲ-V MESFET/HEMTs-field-emmission and tunnel currents”, Solid-State Electronics, Vol. 42, p.447, 1998.
[52] R. S. Sonawane, S. G. Hegde, and M. K. Dongare, “Preparation of titanium(iv) oxide thin-film photocatalyst by sol-gel dip coating,” Mater. Chem. Phys., vol. 77, pp. 744-750, 2003.
[53] O. Harizanov, and A. Harizanova, “Development and investigation of sol-gel solutions for the formation of TiO2 coatings,” Sol. Energy Mater. Sol. Cells, vol. 63, pp. 185-195, 2000.
[54] R. A. Zoppi, B. C. Trasferetti, and C. U. Davanzo, “Sol–gel titanium dioxide thin film on platinum substrates: preparation and characterization,” J. Electroanalytical Chem., vol. 544, pp. 47-57, 2003.
[55] G. Sanvicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Film, vol. 391, pp. 133-137, 2001.
[56] C. Garzella, E. Comini, E. Tempesti, C. Frigeri, and G. Sberveglieri, “TiO2 thin film by a novel sol–gel processing for gas sensor applications,” Sens. Actuators B, vol. 68, pp. 189-196, 2000.
[57] S. C. Chiao, B. G. Bovard, and H. A. Macleod, “Repeatability of the composition of titanium oxide film produced by evaporation of Ti2O3,” Appl. Opt., vol. 37, pp. 5284-5290, 1998.
[58] D. Mergela, D. Buschendorfa, S. Eggerta, R. Grammesb, and B. Samsetc, “Density and refractive index of TiO2 film prepared by reactive evaporation,” Thin Solid Film, vol. 371, pp. 218-224, 2000.
[59] S. G. Springer, P. E. Schmid, R. Sanjines, and F. Levy, “Morphology and electrical properties of titanium oxide nanometric multilayers deposited by DC reactive sputtering,” Surf. Coat. Technol., vol. 151, pp. 51-54, 2002.
[60] P. Zeman and S. Takabayashi, “Effect of total and oxygen partial pressures on structure of photocatalytic TiO2 film sputtered on unheated substrate,” Surf. Coat. Technol., vol. 153, pp. 93-99, 2002.
[61] T. M. Wang, S. K. Zheng, W. Hao, and C. Wang, “Studies on photocatalytic activity and transmittance spectra of TiO2 thin-film prepared by R.F. magnetron sputtering method,” Surf. Coat. Technol., vol. 155, pp. 141-145, 2002.
[62] C. Martinet, V. Paillard, A. Gagnaire, and J. Joseph, “Deposition of SiO2 and TiO2 thin film by plasma enhanced chemical vapor deposition for antireflection coating,” J. Non-Cryst. Solids, vol. 216, pp. 77-82, 1997.
[63] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi-GA, “PECVD of amorphous TiO2 thin film: effect of growth temperature and plasma gas composition,” Thin Solid Film, vol. 371, pp. 126-131, 2000.
[64] N. C. Dacruz, E. C. Rangel, J. J. Wang, B. C. Trasferetti, C. U. Davanzo, Castro-SGC, and Demoraes-MAB, “Properties of titanium-oxide film obtained by PECVD,” Surf. Coat. Technol., vol. 126, pp. 123-130, 2000.
[65] S. S. Huang, and J. S. Chen, “Comparison of the characteristics of TiO2 film prepared by low-pressure and plasma enhanced chemical vapor-deposition,” J. Mater. Sci., vol. 13, pp. 77-81, 2002.
[66] S. Yamamoto, T. Sumita, Sugiharuto, A. Miyashita, and H. Naramoto, “Characterization of epitaxial TiO2 film prepared by pulsed laser deposition,” Thin Solid Film, vol. 401, pp. 88-93, 2001.
[67] D. G. Syarif, A. Miyashita, T. Yamaki, T. Sumita, Y. Choi, and H. Itoh, “Preparation of anatase and rutile thin-film by controlling oxygen partial-pressure,” Appl. Surf. Sci., vol. 193, pp. 287-292, 2002.
[68] R. Paily, A. Dasgupta, N. Dasgupta, P. Bhattacharya, P. Misra, T. Ganguli, L. M. Kukreja, A. K. Balamurugan, S. Rajagopalan, and A. K. Tyagi, “Pulsed-laser deposition of TiO2 for MOS gate dielectric,” Appl. Surf. Sci., vol. 187, pp. 297-304, 2002.
[69] C. K. Ong, and S. J. Wang, “In-situ RHEED monitor of the growth of epitaxial anatase TiO2 thin-film,” Appl. Surf. Sci., vol. 185, pp. 47-51, 2001.
[70] W. Sugimura, T. Yamazaki, H. Shigetani, J. Tanaka and T. Mitsuhashi, “Anatase-type TiO2 thin-film produced by lattice deformation,” Jpn. J. Appl. Phys., vol. 36, pp. 7358-7359, 1997.
[71] M. K. Lee, J. J. Huang, C. M. Shih, and C. C. Cheng, “Properties of TiO2 thin-film on InP substrate prepared by liquid-phase deposition,” Jpn. J. Appl. Phys., vol. 41, pp. 4689-4690, 2002.
[72] M. K. Lee, and B. H. Lei, “Characterization of titanium-oxide film prepared by liquid-phase deposition using hexafluorotitanic acid,” Jpn. J. Appl. Phys., vol. 39, pp. L101-L103, 2000.
[73] X. P. Wang, Y. Yu, X. F. Hu, and L. Gao, “Hydrophilicity of TiO2 film prepared by liquid-phase deposition,” Thin Solid Film, vol. 371, pp. 148-152, 2000.
[74] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-films grown by MOCVD,” Thin Solid Films, vol. 322, pp. 63-67, 1998.
[75] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-films by metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol. 36, pp. 1346-1350, 1997.
[76] C. K. Jung, B. C. Kang, H. Y. Chae, Y. S. Kim, M. K. Seo, S. K. Kim, S. B. Lee, J. H. Boo, Y. J. Moon, and J. Y. Lee, “Growth of TiO2 thin-films on Si(100) and Si(111) substrates using single molecular precursor by high-vacuum MOCVD and comparison of growth-behavior and structural-properties,” J. Cryst. Growth, vol. 235, pp. 450-456, 2002.
[77] M. K. Lee, J. J. Huang, and T. S. Wu, “Electrical characteristics improvement of oxygen-annealed MOCVD-TiO2 films,” Semicond. Sci. Technol., vol. 20, pp. 519-523, 2005.
[78] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface control in the chemical-vapor-deposition of titanium-dioxide on silicon(100),” Thin Solid Films, vol. 377, pp. 766-771, 2000.
[79] B. C. Kang, S. B. Lee, and J. H. Boo, “Growth of TiO2 thin-films on Si(100) substrates using single molecular precursors by metal-organic chemical-vapor-deposition,” Surf. Coat. Technol., vol. 131, pp. 88-92, 2000.
[80] D. H. Lee, Y. S. Cho, W. I. Yi, T. S. Kim, J. K. Lee and H. J. Jung, “Metalorganic chemical-vapor-deposition of TiO2-N anatase thin-film on Si substrate,” Appl. Phys. Lett., vol. 66, pp. 815-821, 1995.
[81] A. Turkovic, M. Ivanda, A. Drasner, V. Vranesa, and M. Persin, “Raman-spectroscopy of thermally annealed TiO2 thin films,” Thin Solid Films, vol. 198, pp. 199-205, 1991.
[82] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Leakage current and electrical breakdown in metal-organic chemical-vapor-deposited TiO2 dielectrics on silicon substrates,” Appl. Phys. Lett., vol. 69, pp. 3860-3862, 1996.
[83] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. H. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, pp. 104-109, 1997
[84] T. Suntola, Mater. Sci. Rep. 4, 261 (1989).
[85] J. W. Lim, H. S. Park, and S. W. Kang, J. Appl. Phys. 88, 6327 (2000).
[86] M. Leskela¨, M. Ritala , Thin Solid Films 409 (2002) 138
[87] M. Ritala, M. Leskela¨, J.-P. Dekker, C. Mutsaers, P.J. Soininen, J. Skarp, Chem. Vap. Depos. 5 (1999) 7.
[88] M. Ritala, K. Kukli, A. Rahtu, et al., Science 288 (2000) 319.
[89] X. Liu, X. Y. Chen, J. Yin, Z. G. Liu, J. M. Liu, X. B. Yin, G. X. Chen, and M. Wang, “Epitaxial growth of TiO2 thin films by pulsed laser deposition on GaAs(100) substrates,” J. Vac. Sci. Technol. A, vol. 19, pp. 391-393, 2001.
[90] D. M. Shang and W. Y. Ching, “Electronic and optical properties of three phases of titanium oxide: Rutile, anatase, and brookite,” Phys. Rev. B, vol. 51, pp. 13023-13032, 1995.
[91] D. C. Gilmer, X. C Wang, M. T. Hsieh, H. S. Kim, W. L. Glasfelter and J. Yan, “MOSFET transistors fabricated with high permittivity TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, pp. 104-109 (1997).
[92] R. Lyer, R. R. Chang, A. Dubey, and D. L. Lile, “The effect of phosphorous and sulfur treatment on the surface properties of InP,” J.Vac. Sci. & Technol. B, vol. 6, pp. 1174-1179, 1988.
[93] R. W. M. Kwok, L. J. Huang, W. M. Lau, M. Kasrai, X. Feng, K. Tan, S. Ingrey, and D. Landheer, “X-ray absorption near edge structures of sulfur on gas-phase polysulfide treated InP surfaces and at SiNx/InP interfaces,” J. Vac. Sci. & Technol. A, vol. 12, pp. 2701-2704, 1994.
[94] Y. Dong, X. Ding, and X. Y. Hou, “Sulfur passivation of GaAs metal-semiconductor field-effect transistor,” Appl. Phys. Lett., vol. 77, pp. 3839-3841, 2000.
[95] J. L. Leclercq, E. Bergignat and G Hollinger, “Surface chemistry of InAlAs after (NH4)2Sx sulphidation,” Semicond. Sci. Technol., vol. 10,pp. 95-100, 1995.
[96] M. J. Chester, T. Jach and J. A. Dagnta, “X-ray photoelectron and Auger electron spectroscopy study of ultraviolet/ozone oxidized, P2S5/(NH4)2S treated GaAs(100) surfaces,” J. Vac. Sci. Technol. A., vol. 11, pp. 474-480, 1993.
[97] Z. H. Lu, M. J. Graham, X. H. Feng and B. X. Yang, “Structure of S on passivated GaAs (100),” Appl. Phys. Lett., vol. 62, pp. 2932-1934 (1993).
[98] M. K. Lee, J. J. Huang, and T. S. Wu, “Low leakage current fluorinated LPD-SiO2/MOCVD-TiO2 film,” Electrochem. Solid-State Lett., vol. 8, pp. F8-F11, 2005.
[99] E. H. Nicollian, and J. R. Brews: MOS (Metal Oxide Semiconductor)Physics and Technology, 2nd ed., Wiley, New York (1991).
[100] E. K. Badih and J. B. Richard, Introduction to VLSI Silicon Device Physics, Technology and Characterization, 340-341, Kluwer Academic Publishers (1986).
[101] M. L. Reed and J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing,” J. Appl. Phys., vol. 63, pp. 5776-5793, 1988.
[102] M. K. Lee, J. J. Huang and Y. H. Hung, “Variation of Electrical Characteristics of MOCVD-TiO2 Films by Postmetallization Annealing,” J. Electrochem. Soc., vol. 152, F190-F193, 2005
[103] Y. S. Yoon, W. N. Kang, H. S. Shin, S. S. Yom, T. W. Kim, J. Y. Lee, D. J. Choi, and S. S. Baek, “Structural properties of BaTiO3 thin film on Si grown by metalorganic chemical vapor deposition,” J. Appl. Phys., vol. 73, pp. 1547-1549, 1993.
[104] A. Tuan, M. Yoon, V. Medvedev, Y. Ono, Y. Ma, and J. W. Rogers, “Interface control in the chemical-vapor-deposition of titanium-dioxide on silicon(100),” Thin Solid Film, vol. 377, pp.766-771, 2000.
[105] P. Babelon, A. S. Dequiedt, H. Mostefasba, S. Bourgeois, P. Sibillot, and M. Sacilotti, “SEM and XPS studies of titanium-dioxide thin-film grown by MOCVD,” Thin Solid Film, vol. 322, pp. 63-67,1998.
[106] S. C. Sun, and T. F. Chen, “Effects of electrode materials and annealing ambient on the electrical-properties of TiO2 thin-film by metalorganic chemical-vapor-deposition,” Jpn. J. Appl. Phys., vol.36, pp. 1346-1350, 1997.
[107] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating,” J. Electrochem. Soc., vol. 135, pp. 2013, 1989.
[108] L. I. Maissel and R. Glang: Handbook of Thin Film Technology,) 1st ed., Chap. 8, McGraw-Hill, New York (1970).
[109] "Technology Backgrounder: Atomic Layer Deposition," IC Knowledge LLC, 24 April 06.
[110] “Powder Diffraction File,” Joint committee on powder diffraction standards.
[111] I. T. Kim, J. W. Jang, H. J. Youn, C. H. Kim and K. S. Hong, “180° ferroelectric domains in polycrystalline BaTiO3 thin films,” Appl. Phys. Lett., vol. 72, pp. 308-310, 1998.
[112] M.C. Marco de Lucas, F. Fabreguette, S. Collin, S. Bourgeois, “MOCVD growth of TiO2 thin films on single crystal GaAs substrates,” International Journal of Inorganic Materials, vol. 2, pp. 255–259, 2000
[113] D. J. Won, C. H. Wang, H. K. Jang, and D. J. Choi, “Effects of thermally induced anatase-to-rutile phase transition in MOCVD-grown TiO2 films on structural an optical properties,” Appl. Phys. A, vol. 73, pp. 595-600, 2001.
[114] Lu H-L et al 2006 Appl. Phys. Lett. 89 162905
[115] Kang J K, Kang M G, and Park H H 2002 Vacuum 67 161
[116] M. K. Lee, J. J. Huang, and T. S. Wu, “Low leakage current fluorinated LPD-SiO2/MOCVD-TiO2 film,” Electrochem. Solid-State Lett., vol. 8, pp. F8-F11, 2005.
[117] B. H. Lee, Y. Jeon, K. Zawadzki, W. J. Qi, and Jack Lee, “Effects of interfacial layer growth on the electrical characteristics of thin titanium oxide films on silicon,” Appl. Phys. Lett., vol. 74, pp. 3143-3145, 1999.
[118] P. H. Lai, S. I Fu, Y. Y. Tsai, C. H. Yen, S. Y. Cheng, and W. C. Liu, “Characteristics of a sulfur-passivated InGaP/InGaAs/GaAs heterostructure field-effect transistor,” Appl. Phys. Lett., vol. 87, pp.083502-083504, 2005.
[119] J. Y. Tewg, Y. Kuo, J. Lu, and B. W. Schueler, “Influence of a 5 Å Tantalum Nitride Interface Layer on Dielectric Properties of Zirconium-Doped Tantalum Oxide High-k Films,” J. Electrochem. Soc., vol. 152, pp. G617-G622, 2005.
[120] M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Appl. Phys. Lett., vol. 86, pp. 152904-152906, 2005.
[121] M. Passlack, N. Medendorp, and R. Gregory, “Role of Ga2O3 template thickness and gadolinium mole fraction in GdxGa0.4–xO0.6/Ga2O3 gate dielectric stacks on GaAs,” Appl. Phys. Lett., vol. 83, pp. 5262-5264, 2003.
[122] F. Shi, K. L Chang, J. Epple, C. F. Xu, K. Y. Cheng, and K. C. Hsieh, “Characterization of GaAs-based n-n and p-n interface junctions prepared by direct wafer bonding,” J. Appl. Phys. vol. 92, pp. 7544-7549, 2002.
[123] R. W. M. Kwok, L. J. Huang, W. M. Lau, M. Kasrai, X. Feng, K. Tan, S. Ingrey, and D. Landheer, “X-ray absorption near edge structures of sulfur on gas-phase polysulfide treated InP surfaces and at SiNx/InP interfaces,” J. Vac. Sci. & Technol. A, vol. 12, pp. 2701-2704, 1994.
[124] K. T. Nam, A. Datta, S. H. Kim, and K. B. Kim, “Improved diffusion barrier by stuffing the grain boundaries of TiN with a thin Al interlayer for Cu metallization,” Appl. Phys. Lett., vol. 79, pp. 2549-2551, 2001.
[125] H. H. Tseng, M. Orlowski, P. J. Tobin, and R. L. Hance, “Fluorine diffusion on a polysilicon grain boundary network in relation to boron penetration from P+ gates,” IEEE Electron Device Lett., vol. 13, pp. 14-16, 1992.
[126] E. H. Nicollian, and J. R. Brews: MOS (Metal Oxide Semiconductor) Physics and Technology, 2nd ed., Wiley, New York (1991).
[127] E. K. Badih and J. B. Richard, Introduction to VLSI Silicon Device Physics, Technology and Characterization, 340-341, Kluwer Academic Publishers (1986).
[128] M. L. Reed and J. D. Plummer, “Chemistry of Si-SiO2 interface trap annealing,” J. Appl. Phys., vol. 63, pp. 5776-5793, 1988.
[129] M. K. Lee, J. J. Huang and Y. H. Hung, “Variation of Electrical Characteristics of MOCVD-TiO2 Films by Postmetallization Annealing,” J. Electrochem. Soc., vol. 152, F190-F193, 2005
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code