Responsive image
博碩士論文 etd-0804109-160932 詳細資訊
Title page for etd-0804109-160932
論文名稱
Title
多種二元金屬玻璃之結構相變與週期變形機制之原子模擬研究
Atomic Simulations on Phase Transformation and Cyclic Deformation Mechanisms in Various Binary Metallic Glasses
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
208
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-27
繳交日期
Date of Submission
2009-08-04
關鍵字
Keywords
鋯銅、鎂銅、鋯鈦、原子模擬、分子動力學、金屬玻璃、滾壓、結構相變、鋯鎳、週期變形
Zr-Ti, Zr-Ni, Zr-Cu, Mg-Cu, accumulative roll bonding, cyclic deformation, molecular dynamics, phase transformation, metallic glass, atomic simulation
統計
Statistics
本論文已被瀏覽 5645 次,被下載 0
The thesis/dissertation has been browsed 5645 times, has been downloaded 0 times.
中文摘要
金屬玻璃具有高強度、高彈性應變極限、甚好的抗腐蝕能力等特殊性質,因此被視為是具有應用潛力的金屬材料。過去四十年來,已經有許多的學習專注在這一類金屬玻璃的機械性質、熱力學性質上面,但仍然有許多關於基本的變形機制與微結構的問題尚未釐清。分子動力學可以為原子尺度的材料性質提供一個明顯的洞悉力,亦即提供我們一個原子結構細節的圖像去瞭解材料的微觀性質。分子動力學在此論文被用來學習多種二元金屬玻璃合金的材料性質與變形機制,並且試圖去探討將它與本研究室的實驗結果相互印證的可能性。

本研究的第一部份是用分子動力學來模擬鋯鎳、鋯鈦等二元合金、以及純鋯元素在室溫下以應力誘導方式使其逐漸玻璃化過程中,其原子混和與局部結構的轉變機制。研究發現二十面體的原子團簇會伴隨著鋯鎳、鋯鈦合金系統內的無序環境增加而逐漸發展,形成非晶型的原子堆積。同時也觀察到當施予劇烈塑性變形而發生固態非晶化過程時,在鋯鎳系統中出現疑似介金屬化合物的過渡結構。模擬結果亦顯示,當滾壓速度夠快同時環境溫度被控制在300 K左右時,結晶的純鋯元素理論上可以被非晶化。

研究的第二部份,採用等效介質理論所發展的鎂銅勢能函數去學習鎂銅薄膜介面間的擴散性質。在300、413以及500 K等不同溫度探討鎂銅薄膜介面的局部結構轉變,並將模擬結果與電子顯微鏡、X-Ray繞射的實驗結果作比對。依照鎂銅原子特性來討論局部原子配對與團簇結構的演變行為。

最後一個部分是以分子動力學研究二元鋯銅金屬玻璃在小空間尺度下的週期性疲勞損壞的過程,藉由適當的冷凝速率5K/ps由高溫急速冷卻至室溫以產生一個三維空間的鋯銅金屬玻璃模型。並採用Nose-Hoover chain方法來控制模擬時系統的溫度、壓力,使其維持在合理的熱力學狀態,並用來控制週期變形時系統應力狀態。同時使用應力控制、應變控制兩種模式來學習結構反應行為與自由體積的演變。研究結果顯示,在週期變形的過程中,結構始終被維持在非晶態。塑性變形的發展乃是藉由可逆與不可逆結構鬆弛行為,由個別的剪變形區帶(shear transition zone)開始逐漸形成網狀連結發展所貢獻,與在大空間尺度下是由剪帶(shear band)所貢獻而成的機制有所不同。動態回復與可逆/不可逆的結構重組行為不斷發生在本模型中,同時伴隨著多餘自由體積的消除。這個行為也許能夠阻止金屬玻璃的疲勞損害並增加他們的疲勞週期。
Abstract
The bulk metallic glasses (BMGs) are potential metallic materials due to their interesting properties, such as the high strength, high elastic strain limit, and high wear/corrosion resistance. Over the past four decades, a variety of studies have been done on the characteristics of the mechanical, thermodynamic properties of such category of metallic materials, but there still remain many questions about basic deformation mechanisms and their microstructures so far. Molecular dynamics (MD) simulation can provide significant insight into material properties under the atomic level and see a detailed picture of the model under available investigation in explaining the connection of macroscopic properties to atomic scale. MD simulation is applied to study the material properties and the deformation mechanisms in various binary metallic glasses and intended to examine the feasibility of MD simulation to compare the experimental results obtained in our laboratory over the past few years.

The gradual vitrification evolution of atom mixing and local atomic pairing structure of the binary Zr-Ni, Zr-Ti alloys and pure Zr element during severe deformation at room temperature is traced numerically by molecular dynamic simulation. It is found that the icosahedra clusters will gradually develop with the increasing of disorder environment of alloys in the Zr-Ni, Zr-Ti systems, forming amorphous atomic packing. Other compound-like transition structures were also observed in transient in the Zr-Ni couple during the solid-state amorphization process under severe plastic deformation. The crystalline pure Zr can be vitrified in the simulation provided that the rolling speed is high enough and the rolling temperature is maintained at around 300 K.
On the other hand, the effective medium theory (EMT) inter-atomic potential is employed in the molecular dynamics (MD) simulation to challenge the study of the diffusion properties in the Mg-Cu thin films. The transition of local structures of Mg-Cu thin films is traced at annealing temperatures of 300, 413, and 500 K. Furthermore, the simulation results are compared with the experimental results obtained from the transmission electron microscopy and X-ray diffraction. The gradual evolution of the local atomic pairing and cluster structure is discussed in light of the Mg and Cu atomic characteristics.

Lately, the progress of the cyclic-fatigue damage in a binary Zr-Cu metallic glass in small size scale is investigated using classical molecular-dynamics (MD) simulations. The three-dimensional Zr-Cu fully amorphous structure is produced by quenching at a cooling rate 5 K/ps (ps = 10-12 s-1) from a high liquid temperature. The Nose-Hoover chain method is used to control the temperature and pressure to maintain a reasonable thermodynamic state during the MD-simulation process, as well as to bring the imposed cyclic stress on the subsequent simulation process. Both the stress- and strain-control cyclic loadings are applied to investigate the structural response and free-volume evolution. The overall structure would consistently maintain the amorphous state during cyclic loading. The plastic deformation in simulated samples proceeds via the network-like development of individual shear transition zones (STZs) by the reversible and irreversible structure-relaxations during cyclic loading, dislike the contribution of shear band in large-scale specimens. Dynamic recovery and reversible/irreversible structure rearrangements occur in the current model, along with annihilation of excessive free volumes. This behavior might be able to retard the damage growth of metallic glass and enhance their fatigue life.
目次 Table of Contents
Content i
List of Tables v
List of Figures vi
Abstract xviii
中文摘要 xx
Chapter 1 Introduction and motivation 1
1-1 Introduction 1
1-2 Motivation 4
Chapter 2 Background and Literature Review of metallic glasses 7
2-1 The development of metallic glasses 7
2-2 Microstructures in metallic glasses 10
2-3 Mechanical properties 13
2-4 Deformation mechanisms 15
2-5 Fatigue properties in BMGs 20
Chapter 3 Background of Molecular Dynamics Simulation 23
3-1 Equations of motion and potential function 23
3-2 Ensembles 27
3-3 Integration of the Newtonian equation 29
3-4 Periodic boundary conditions 30
3-5 List method and cut-off radius 30
Chapter 4 Model and Theory 32
4-1 Cyclic transformation between nanocrystalline and amorphous phases in Zr based intermetallic alloys during ARB 32
4-1-1 Tight-binding potential 32
4-1-2 Simulation model and conditions 33
4-1-3 Analysis methods for structural properties 35
4-2 Atomic simulation of vitrification transformation in Mg-Cu thin film 37
4-2-1 Effective-medium theory potential 37
4-2-2 Derivation of force for EMT potential 40
4-2-3 Simulation model and conditions 43
4-3 Cyclic loading fatigue in a binary Zr-Cu metallic glass 43
4-3-1 Interatomic potential used in Zr-Cu 43
4-3-2 Isothermal-isobaric ensemble and Nosé-Hoover Chain 44
4-3-3 Simulation model and conditions 46
4-3-4 Observation of local shear strains 48
Chapter 5 Simulation results 50
5-1 The results of phase transformation in Zr based intermetallic alloys during ARB 50
5-1-1 Morphologies of Zr-Ni and Zr-Ti during ARB cycles 50
5-1-2 Morphologies of pure Zr during ARB cycles 51
5-1-3 The results of radial distribution function (RDF) calculations for Zr-Ni,
Zr-Ti, and pure Zr 52
5-1-4 The average coordination number and potential energy for Zr-Ni, Zr-Ti, and
pure Zr 54
5-1-5 The results of HA analysis for Zr-Ni, Zr-Ti, and pure Zr 55
5-2 The simulation results of vitrification transformation in Mg-Cu Thin Film 58
5-2-1 Morphologies of Mg-Cu during different temperatures 58
5-2-2 The results of density distribution profiles for the Mg-Cu 59
5-3 The simulation results of cyclic loading fatigue in Zr-Cu binary amorphous alloy 59
5-3-1 The simulation results for Zr50Cu50 under different cooling rates 59
5-3-2 The mechanical properties of monotonic tension tests at different strain rates 60
5-3-3 The results of structural analysis for different cyclic loading conditions 62
5-3-4 Potential energies for different cyclic loading conditions 64
5-3-5 Variations of density (dilatation) analysis for different cyclic loading conditions 65
5-3-6 The results of local atomic strain for different cyclic loading conditions 68
5-3-7 The stress-strain curves for different cyclic loading conditions 70
Chapter 6 Discussion 72
6-1 The phase transformation in Zr based intermetallic alloys during ARB 72
6-1-1 The transformation of Zr-Ni from nanocrystalline to amorphous phase
during ARB 72
6-1-2 The transformation of Zr-Ti from nanocrystalline to amorphous phase
during ARB 75
6-1-3 The transformation of pure Zr from nanocrystalline to amorphous phase
during ARB 76
6-2 Vitrification transformation in Mg-Cu thin film 78
6-3 Cyclic loading fatigue in Zr-Cu binary amorphous alloy 80
6-3-1 The crystallization in cyclic loading fatigue 80
6-3-2 The structural relaxation in cyclic loading fatigue 81
6-3-3 Microscopic deformation in cyclic loading 82
6-3-4 The phenomenon of dynamic recovery 84
6-3-5 Fatigue softening or hardening in current model 87
6-4 Short discussion on the comparison of MD simulation and experimental results 88
Chapter 7 Conclusions 90
Reference 94
Tables 106
Figures 110
參考文獻 References
1. K.L. Chapra, Thin Film Phenomena. 1969: McGraw-Hill.
2. P.S. Gramt, Progress in Materials Science, 1995, 39, 497.
3. B. Li, N. Nordstrom and E.J. Lavernia, Mater. Sci. Eng. A, 1997, 237, 207.
4. C.R.M. Afonso, C. Bolfarini, C.S. Kiminami, N.D. Bassim, M.J. Kaufman, M.F. Amateau, T.J. Eden and J.M. Galbraith, Journal of Non-Crystalline Solids, 2001, 284, 134-138.
5. R. Liu, J. Li, K. Dong, C. Zheng and H. Liu, Mater. Sci. Eng. B, 2002, 94, 141.
6. C.C. Koch, O.B. Cavin, C.G. McKamey and J.O. Scarbrough, Applied Physics Letters, 1983, 43, 1017-1019.
7. J. Eckert, Mater. Sci. Eng. A, 1997, 226-228, 364.
8. N. Schultz, Mater. Sci. Eng., 1998, 97, 15.
9. F.Z. J. Lee, K. H. Chung, N. J. Kim, and E. J. Lavernia,, Metall. Mater. Trans. A, 2001, 32, 3109.
10. M. Sherif, E. Eskandarany and A. Inoue, Metall. Mater. Trans. A, 2002, 33, 135.
11. Z.P. Xing, S.B. Kang and H.W. Kim, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 2002, 33, 1521-1530.
12. X.L. Yeh, K. Samwer and W.L. Johnson, Applied Physics Letters, 1983, 42, 242-244.
13. A. Sagel, H. Sieber, H.J. Fecht and J.H. Perepzko, Acta Materialia, 1998, 46, 4233.
14. N. Tsuji, Y. Saito, S.H. Lee and Y. Minamino, Advanced Engineering Materials, 2003, 5, 338.
15. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai and R.G. Hong, Scripta Materialia, 1998, 39, 1221-1227.
16. R.B. Schwarz and W.L. Johnson, Physical Review Letters, 1983, 51, 415-418.
17. P. Haussler, F. Baumann, J. Krieg, G. Indlekofer, P. Oelhafen and H.J. Guntherodt, Physical Review Letters, 1983, 51, 714-717.
18. A.L. Greer, Science, 1995, 267, 1947-1953.
19. W.L. Johnson, Mrs Bulletin, 1999, 24, 42-56.
20. W.H. Wang, C. Dong and C.H. Shek, Materials Science & Engineering R-Reports, 2004, 44, 45-89.
21. J.P.K. Doye and D.J. Wales, Science, 1996, 271, 484-487.
22. F. Spaepen, Nature, 2000, 408, 781-782.
23. H.W. Sheng, W.K. Luo, F.M. Alamgir, J.M. Bai and E. Ma, Nature, 2006, 439, 419-425.
24. H. Tanaka, Journal of Non-Crystalline Solids, 2005, 351, 3396-3413.
25. Y.I. Golovin, V.I. Ivolgin, V.A. Khonik, K. Kitagawa and A.I. Tyurin, Scripta Materialia, 2001, 45, 947-952.
26. P. Murah and U. Ramamurty, Acta Materialia, 2005, 53, 1467-1478.
27. U. Ramamurty, S. Jana, Y. Kawamura and K. Chattopadhyay, Acta Materialia, 2005, 53, 705-717.
28. G.P. Zhang, W. Wang, B. Zhang, J. Tan and C.S. Liu, Scripta Materialia, 2005, 52, 1147-1151.
29. J.R. Morris, R.S. Aga, T. Egami and V.A. Levashov, International Journal of Modern Physics B, 2009, 23, 1229-1234.
30. K. Nordlund and R.S. Averback, Applied Physics Letters, 1997, 70, 3101-3103.
31. J.S. Robach, I.M. Robertson, H.J. Lee and B.D. Wirth, Acta Materialia, 2006, 54, 1679-1690.
32. H. Van Swygenhoven, P.M. Derlet and A.G. Froseth, Acta Materialia, 2006, 54, 1975-1983.
33. H. Van Swygenhoven, D. Farkas and A. Caro, Physical Review B, 2000, 62, 831-838.
34. D. Wolf, V. Yamakov, S.R. Phillpot, A. Mukherjee and H. Gleiter, Acta Materialia, 2005, 53, 1-40.
35. G.P. Zheng, Y.M. Wang and M. Li, Acta Materialia, 2005, 53, 3893-3901.
36. P.C. Millett, R.P. Selvam and A. Saxena, Acta Materialia, 2006, 54, 297-303.
37. P.J. Hsieh, Y.P. Hung and J.C. Huang, Scripta Materialia, 2003, 49, 173-178.
38. P.J. Hsieh, J.C. Huang, Y.P. Hung, S.I. Chou and J.S.C. Jang, Materials Chemistry and Physics, 2004, 88, 364-376.
39. P.J. Hsieh, Y.P. Hung, S.I. Chou and J.C. Huang, Materials Transactions, 2004, 45, 2686-2692.
40. S. Vautha and S.G. Mayr, Appl. Phys. Lett., 2005, 86, 061913.
41. X. He, S.H. Liang, J.H. Li and B.X. Liu, Physical Review B, 2007, 75, 10.
42. G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, Y. Yokoyama, M.L. Benson, B.A. Green, M.J. Kirkham, S.A. White, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu and C.R. Brooks, Intermetallics, 2004, 12, 885-892.
43. G.Y. Wang, P.K. Liaw, W.H. Peter, B. Yang, M. Freels, Y. Yokoyama, M.L. Benson, B.A. Green, T.A. Saleh, R.L. McDaniels, R.V. Steward, R.A. Buchanan, C.T. Liu and C.R. Brooks, Intermetallics, 2004, 12, 1219-1227.
44. W. Klement, R.H. Willens and P. Duwez, Nature, 1960, 187, 869-870.
45. H.S. Chen and D. Turnbull, Acta Metallurgica, 1969, 17, 1021-1031.
46. H.S. Chen, Acta Metallurgica, 1974, 22, 1505-1511.
47. D. Turnbull and J.C. Fisher, Journal of Chemical Physics, 1949, 17, 71-73.
48. Z.P. Lu and C.T. Liu, Acta Materialia, 2002, 50, 3501-3512.
49. L. Xia, S.S. Fang, Q. Wang, Y.D. Dong and C.T. Liu, Applied Physics Letters, 2006, 88, 3.
50. A.J. Drehman, A.L. Greer and D. Turnbull, Applied Physics Letters, 1982, 41, 716-717.
51. H.W. Kui, A.L. Greer and D. Turnbull, Applied Physics Letters, 1984, 45, 615-616.
52. W.L. Johnson, Progress in Materials Science, 1986, 30, 81-134.
53. A. Inoue, T. Zhang and T. Masumoto, Materials Transactions, JIM, 1989, 30, 965-972.
54. A. Inoue, Acta Materialia, 2000, 48, 279-306.
55. A. Inoue, A. Kato, T. Zhang, S.G. Kim and T. Masumoto, Materials Transactions, JIM, 1991, 32, 609-616.
56. T. Zhang, A. Inoue and T. Masumoto, Materials Transactions, JIM, 1991, 32, 1005-1010.
57. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba and T. Masumoto, Materials Transactions, JIM, 1993, 34, 1234-1237.
58. A. Inoue, Materials Transactions, JIM, 1995, 36, 866-875.
59. A. Inoue, N. Nishiyama and H. Kimura, Materials Transactions, JIM, 1997, 38, 179-183.
60. A. Inoue, Materials Science and Engineering A, 2001, 304-306, 1-10.
61. M. Leonhardt, W. Loser and H.G. Lindenkreuz, Acta Materialia, 1999, 47, 2961-2968.
62. F.Q. Guo, S.J. Poon and G.J. Shiflet, Applied Physics Letters, 2004, 84, 37-39.
63. W.J. Meng, B. Fultz, E. Ma and W.L. Johnson, Applied Physics Letters, 1987, 51, 661-663.
64. W.J. Meng, C.W. Nieh and W.L. Johnson, Applied Physics Letters, 1987, 51, 1693-1695.
65. D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu and E. Ma, Applied Physics Letters, 2004, 84, 4029-4031.
66. D.H. Xu, B. Lohwongwatana, G. Duan, W.L. Johnson and C. Garland, Acta Materialia, 2004, 52, 2621-2624.
67. T. Hattori, H. Saitoh, H. Kaneko, Y. Okajima, K. Aoki and W. Utsumi, Physical Review Letters, 2006, 96, 4.
68. J.D. Bernal, Nature, 1959, 183, 141.
69. M.H. Cohen and D. Turnbull, Nature, 1964, 203, 964.
70. R. Wang, Nature, 1979, 278, 700-704.
71. A. Inoue, T. Negishi, H.M. Kimura, T. Zhang and A.R. Yavari, Materials Transactions Jim, 1998, 39, 318-321.
72. W.H. Wang, R.J. Wang, D.Q. Zhao, M.X. Pan and Y.S. Yao, Physical Review B, 2000, 62, 11292-11295.
73. W.H. Wang, Q. Wei, S. Friedrich, M.P. Macht, N. Wanderka and H. Wollenberger, Applied Physics Letters, 1997, 71, 1053-1055.
74. A. Inoue, Bulk Amorphous Alloys. 1998: Trans Tech Publications.
75. J.D. Honeycutt and H.C. Andersen, Journal of Physical Chemistry, 1987, 91, 4950-4963.
76. H. Jonsson and H.C. Andersen, Physical Review Letters, 1988, 60, 2295-2298.
77. J.H. He and E. Ma, Physical Review B, 2001, 64, 12.
78. J.H. He, H.W. Sheng, P.J. Schilling, C.L. Chien and E. Ma, Physical Review Letters, 2001, 86, 2826-2829.
79. W.K. Luo, H.W. Sheng, F.M. Alamgir, J.M. Bai, J.H. He and E. Ma, Physical Review Letters, 2004, 92, 4.
80. C.F. Li, J. Saida, M. Matsushita and A. Inoue, Applied Physics Letters, 2000, 77, 528-530.
81. H. Reichert, O. Klein, H. Dosch, M. Denk, V. Honkimaki, T. Lippmann and G. Reiter, Nature, 2000, 408, 839-841.
82. D.R.N.a.F. Spaepen, Solid State Physics, 1989, 42, 1.
83. J. Saida, M. Matsushita and A. Inoue, Applied Physics Letters, 2001, 79, 412-414.
84. W.H. Wang, E. Wu, R.J. Wang, S.J. Kennedy and A.J. Studer, Physical Review B, 2002, 66, 5.
85. T. Waniuk, J. Schroers and W.L. Johnson, Physical Review B, 2003, 67, 9.
86. J.M. Cowley, Ultramicroscopy, 2002, 90, 197-206.
87. N. Mattern, U. Kuhn, H. Hermann, H. Ehrenberg, J. Neuefeind and J. Eckert, Acta Materialia, 2002, 50, 305-314.
88. T.C. Hufnagel, Nature Materials, 2004, 3, 666-667.
89. A. Hirata, Y. Hirotsu, E. Matsubara, T. Ohkubo and K. Hono, Physical Review B, 2006, 74, 6.
90. D.B. Miracle, Nature Materials, 2004, 3, 697-702.
91. G.L. Chen, X.J. Liu, X.D. Hui, H.Y. Hou, K.F. Yao, C.T. Liu and J. Wadsworth, Applied Physics Letters, 2006, 88, 3.
92. C. Fan, P.K. Liaw, V. Haas, J.J. Wall, H. Choo, A. Inoue and C.T. Liu, Physical Review B, 2006, 74, 6.
93. C. Fan, P.K. Liaw, T.W. Wilson, H. Choo, Y.F. Gao, C.T. Liu, T. Proffen and J.W. Richardson, Applied Physics Letters, 2006, 89, 3.
94. C. Fan, P.K. Liaw, T.W. Wilson, W. Dmowski, H. Choo, C.T. Liu, J.W. Richardson and T. Proffen, Applied Physics Letters, 2006, 89, 3.
95. A. Takeuchi and A. Inoue, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2004, 375, 1140-1144.
96. K.M. Flores and R.H. Dauskardt, Acta Materialia, 2001, 49, 2527-2537.
97. K.M. Flores and R.H. Dauskardt, Journal of Materials Research, 1999, 14, 638-643.
98. A. Inoue and A. Takeuchi, Materials Transactions, 2002, 43, 1892-1906.
99. W.L. Johnson, Jom-Journal of the Minerals Metals & Materials Society, 2002, 54, 40-43.
100. C.C. Hays, C.P. Kim and W.L. Johnson, Physical Review Letters, 2000, 84, 2901-2904.
101. J. Schroers and W.L. Johnson, Physical Review Letters, 2004, 93, 4.
102. M.H. Cohen and D. Turnbull, Journal of Chemical Physics, 1959, 31, 1164-1169.
103. F. Spaepen, Acta Metallurgica, 1977, 25, 407-415.
104. A.S. Argon, Acta Metallurgica, 1979, 27, 47-58.
105. P.L. Michael Miller, Bulk Metallic Glasses: An Overview. Hardcover ed. 2007: Springer
106. A. Vandenbeukel and J. Sietsma, Acta Metallurgica Et Materialia, 1990, 38, 383-389.
107. B. Yang, M.L. Morrison, P.K. Liaw, R.A. Buchanan, G.Y. Wang, C.T. Liu and M. Denda, Applied Physics Letters, 2005, 86, 141904.
108. F. Albano and M.L. Falk, Journal of Chemical Physics, 2005, 122, 8.
109. Q.K. Li and M. Li, Applied Physics Letters, 2006, 88, 3.
110. Q.K. Li and M. Li, Physical Review B, 2007, 75, 5.
111. M.W. Chen, Annual Review of Materials Research, 2008, 38, 445-469.
112. C.A. Schuh, T.C. Hufnagel and U. Ramamurty, Acta Materialia, 2007, 55, 4067-4109.
113. C.A. Schuh and A.C. Lund, Nature Materials, 2003, 2, 449-452.
114. P.G. Debenedetti and F.H. Stillinger, Nature, 2001, 410, 259-267.
115. W.L. Johnson and K. Samwer, Physical Review Letters, 2005, 95, 4.
116. M. Zink, K. Samwer, W.L. Johnson and S.G. Mayr, Physical Review B, 2006, 73, 3.
117. M.L. Falk and J.S. Langer, Physical Review E, 1998, 57, 7192-7205.
118. M.L. Manning, J.S. Langer and J.M. Carlson, Physical Review E, 2007, 76, 16.
119. Y.F. Shi, M.B. Katz, H. Li and M.L. Falk, Physical Review Letters, 2007, 98, 4.
120. J.S. Langer, Physical Review E, 2008, 77, 021502.
121. M.L. Manning, E.G. Daub, J.S. Langer and J.M. Carlson, Physical Review E, 2009, 79, 17.
122. E. Pekarskaya, C.P. Kim and W.L. Johnson, Journal of Materials Research, 2001, 16, 2513-2518.
123. J. Li, F. Spaepen and T.C. Hufnagel, Philosophical Magazine A, 2002, 82, 2623-2630.
124. T.C. Hufnagel, T. Jiao, Y. Li, L.Q. Xing and K.T. Ramesh, Journal of Materials Research, 2002, 17, 1441-1445.
125. Q.K. Li and M. Li, Applied Physics Letters, 2005, 87, 031910
126. Q.K. Li and M. Li, Intermetallics, 2006, 14, 1005-1010.
127. N.P. Bailey, J. Schiotz and K.W. Jacobsen, Physical Review B, 2006, 73, 12.
128. F. Shimizu, S. Ogata and J. Li, Acta Materialia, 2006, 54, 4293-4298.
129. F. Shimizu, S. Ogata and J. Li, Materials Transactions, 2007, 48, 2923-2927.
130. S. Ogata, F. Shimizu, J. Li, M. Wakeda and Y. Shibutani, Intermetallics, 2006, 14, 1033-1037.
131. J.J. Lewandowski and A.L. Greer, Nature Materials, 2006, 5, 15-18.
132. F. Spaepen, Nature Materials, 2006, 5, 7-8.
133. B. Yang, C.T. Liu, T.G. Nieh, M.L. Morrison, P.K. Liaw and R.A. Buchanan, Journal of Materials Research, 2006, 21, 915-922.
134. M.L. Morrison, R.A. Buchanan, P.K. Liaw, B.A. Green, G.Y. Wang, C. Liu and J.A. Horton, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2007, 467, 190-197.
135. M.L. Morrison, R.A. Buchanan, P.K. Liaw, B.A. Green, G.Y. Wang, C.T. Liu and J.A. Horton, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2007, 467, 198-206.
136. C.J. Gilbert, V. Schroeder and R.O. Ritchie, Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science, 1999, 30, 1739-1753.
137. C.J. Gilbert, J.M. Lippmann and R.O. Ritchie, Scripta Materialia, 1998, 38, 537-542.
138. K.K. Cameron and R.H. Dauskardt, Scripta Materialia, 2006, 54, 349-353.
139. M.E. Launey, R. Busch and J.J. Kruzic, Acta Materialia, 2008, 56, 500-510.
140. D.F.a.B. Smit, Understanding Molecular Simulation from Algorithms to Applications. 2nd edition ed. 2002: Academic Press.
141. F.F. Chen, H.F. Zhang, F.X. Qin and Z.Q. Hu, Journal of Chemical Physics, 2004, 120, 1826-1831.
142. M.P. Allen and D.J. Tildesly, Computer Simulation of Liquids. 1987: Clarendon.
143. W.J. Minkowycz and E.M. Sparrow, Numerical Heat Transfer Part a-Applications, 2002, 42, 1.
144. W.J. Minkowycz and E.M. Sparrow, Numerical Heat Transfer Part B-Fundamentals, 1998, 33, 3-3.
145. M.S. Daw and M.I. Baskes, Physical Review B, 1984, 29, 6443-6453.
146. L.V. Woodcock, Chemical Physics Letters, 1971, 10, 257-&.
147. S. Nose, Progress of Theoretical Physics Supplement, 1991, 1-46.
148. H.C. Andersen, Journal of Chemical Physics, 1980, 72, 2384-2393.
149. S. Nose, Journal of Chemical Physics, 1984, 81, 511-519.
150. S. Nose, Molecular Physics, 1984, 52, 255-268.
151. W.G. Hoover, Physical Review A, 1986, 34, 2499-2500.
152. M. Parrinello and A. Rahman, Physical Review Letters, 1980, 45, 1196-1199.
153. M.P. Allen, 2004.
154. F. Cleri and V. Rosato, Physical Review B, 1993, 48, 22-33.
155. H.K. F. Shimizu, H. Kaburaki, J. Li and S. Yip. in Proceedings of the Fourth International Conference SNA2000. 2000.
156. G. Duan, D.H. Xu, Q. Zhang, G.Y. Zhang, T. Cagin, W.L. Johnson and W.A. Goddard, Physical Review B, 2005, 71, 9.
157. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee and H. Gleiter, Nature Materials, 2002, 1, 45-48.
158. J. Liu, J.Z. Zhao and Z.Q. Hu, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2007, 452, 103-109.
159. Y.T. Zhu and X.Z. Liao, Applied Physics Letters, 2005, 86, 3.
160. J.D. Honeycutt and H.C. Andersen, Chemical Physics Letters, 1984, 108, 535-538.
161. K.W. Jacobsen, J.K. Norskov and M.J. Puska, Physical Review B, 1987, 35, 7423-7442.
162. K.W. Jacobsen, P. Stoltze and J.K. Norskov, Surface Science, 1996, 366, 394-402.
163. J. Schiotz and K.W. Jacobsen, Science, 2003, 301, 1357-1359.
164. N.P. Bailey, J. Schiotz and K.W. Jacobsen, Physical Review B, 2004, 69, 11.
165. A. Paduraru, A. Kenoufi, N.P. Bailey and J. Schiotz, Advanced Engineering Materials, 2007, 9, 505-508.
166. M.E. Tuckerman and G.J. Martyna, Journal of Physical Chemistry B, 2000, 104, 159-178.
167. M.E. Tuckerman, D.A. Yarne, S.O. Samuelson, A.L. Hughes and G.J. Martyna, Computer Physics Communications, 2000, 128, 333-376.
168. C.J. Mundy, S. Balasubramanian, K. Bagchi, M.E. Tuckerman, G.J. Martyna and M.L. Klein, Nonequilibrium molecular dynamics, in Reviews in Computational Chemistry, Vol 14. 2000, Wiley-Vch, Inc: New York. p. 291-397.
169. Y.H. Lai, C.J. Lee, Y.T. Cheng, H.S. Chou, H.M. Chen, X.H. Du, C.I. Chang, J.C. Huang, S.R. Jian, J.S.C. Jang and T.G. Nieh, Scripta Materialia, 2008, 58, 890-893.
170. C.J. Lee, J.C. Huang and T.G. Nieh, Applied Physics Letters, 2007, 91, 3.
171. G.P. Potirniche, M.F. Horstemeyer, G.J. Wagner and P.M. Gullett, International Journal of Plasticity, 2006, 22, 257-278.
172. G.P. Potirniche, M.F. Horstemeyer, P.M. Gullett and B. Jelinek, Proceedings of the Royal Society a-Mathematical Physical and Engineering Sciences, 2006, 462, 3707-3731.
173. L. Tayebi, C.E. Lekka and G.A. Evangelakis. Poisson ratio under compressive and tensile strain; effect on the mechanical response of the Cu46Zr54 metallic glass. 2008: Wiley-V C H Verlag Gmbh.
174. Z.W. Shan, J. Li, Y.Q. Cheng, A.M. Minor, S.A.S. Asif, O.L. Warren and E. Ma, Physical Review B, 2008, 77, 6.
175. P.J. Hsieh, Y.C. Lo, J.C. Huang and S.P. Ju, Intermetallics, 2006, 14, 924-930.
176. A.C. Lund and C.A. Schuh, Journal of Applied Physics, 2004, 95, 4815-4822.
177. C.A. Schuh, A.C. Lund and T.G. Nieh, Acta Materialia, 2004, 52, 5879-5891.
178. L.J. Peng, J.R. Morris and Y.C. Lo, Physical Review B, 2008, 78, 4.
179. Y.F. Shi and M.L. Falk, Physical Review B, 2006, 73, 10.
180. P. Nash, Phase Diagrams of Binary Alloys, ed. M. Park. 1991, Ohio, USA: ASM International.
181. T.B. Massalski, Binary Alloy Phase Diagrams. second edition ed. 1990, Ohio, USA: ASM International, Materials Park,.
182. M.S. Ong, Y. Li, D.J. Blackwood and S.C. Ng. The influence of heat treatment on the corrosion behaviour of amorphous melt-spun binary Mg-18 at.% Ni and Mg-21 at.% Cu alloy. 2001: Elsevier Science Sa.
183. O.P. Pandey, S.N. Ojha and T.R. Anantharaman, Journal of Materials Science Letters, 1992, 11, 1260-1262.
184. Y.C. Lo, J.C. Huang, C.L. Chen, S.P. Ju, H.S. Chou, X.H. Du, M.C. Liu and C.N. Kuo, Journal of Computational and Theoretical Nanoscience, 2008, 5, 1717-1721.
185. J.J. Kim, Y. Choi, S. Suresh and A.S. Argon, Science, 2002, 295, 654-657.
186. C.L. Na Wang, Zhenmin Du, Fuming Wang, and Weijing Zhanga, Computer Coupling of Phase Diagrams and Thermochemistry, 2006, 30, 461.
187. V.A. Khonik, A.T. Kosilov, V.A. Mikhailov and V.V. Sviridov, Acta Materialia, 1998, 46, 3399-3408.
188. V.I. Belyavsky, K. Csach, V.A. Khonik, V.A. Mikhailov and V. Ocelik, Journal of Non-Crystalline Solids, 1998, 241, 105-112.
189. G. Kumar, H.X. Tang and J. Schroers, Nature, 2009, 457, 868-872.
190. A. Takeuchi and A. Inoue. Size dependence of soft to hard magnetic transition in (Nd, Pr)-Fe-Al bulk amorphous alloys. 2004: Elsevier Science Sa.
191. K. Wang, T. Fujita, Y.Q. Zeng, N. Nishiyama, A. Inoue and M.W. Chen, Acta Materialia, 2008, 56, 2834-2842.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.224.33.107
論文開放下載的時間是 校外不公開

Your IP address is 18.224.33.107
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code