Responsive image
博碩士論文 etd-0804109-175443 詳細資訊
Title page for etd-0804109-175443
論文名稱
Title
高良率具阻擋氧化層且自我對齊之矽覆絕緣金氧半的新技術開發及其特性探討與在1T-DRAM的應用
A High-yield Process Design for Self-aligned SOI MOSFET with Block Oxide and Its Characterization and Application for 1T-DRAM
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
74
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-26
繳交日期
Date of Submission
2009-08-04
關鍵字
Keywords
阻擋氧化層、短通道效應、動態隨機存取記憶體
DRAM, Short channel effects, Block oxide
統計
Statistics
本論文已被瀏覽 5645 次,被下載 0
The thesis/dissertation has been browsed 5645 times, has been downloaded 0 times.
中文摘要
在本論文中,提出了一個高良率的新自我對齊製程來製作運用在1T-DRAM方面之具阻擋氧化層的金氧半,並且克服了舊製程[1]做法不易運用在薄埋氧化層元件上的問題。藉由TCAD 10.0的模擬,我們比較了傳統PDSOI的1T-DRAM架構及用此篇論文所提出的新作法所製作的具阻擋氧化層之部份空乏矽覆絕緣電晶體(bPDSOI)架構,我們發現在新架構Body兩旁的阻擋氧化層不僅能抑制短通道效應、降低Source/Drain與Body間P-N接面所造成漏電流與提高閘極對通道的控制能力,更能有效的降低1T-DRAM的功率消耗與提升整體上的操作速度。相較於傳統PDSOI DRAM,在同樣執行一Programming window為10 μA的讀寫動作中,新型1T-DRAM元件,bPDSOI在Wrtie “1”時所消耗的功率減少了39%,在Wrtie “0” 時所消耗的功率減少了25%,整體上的能量消耗僅為傳統PDSOI的23%且操作時間更短,Retention time更長。
Abstract
In this paper, we propose a high-yield self-aligned process to form a silicon-on-insulator MOSFET with block oxide for 1T DRAM use. The new process can overcome the problem of the previous one [1], which cannot be used for a thin BOX devices. Based on the TCAD 10.0 simulation, we compared the conventional 1T-DRAM (PDSOI) with the partially depleted SOI with block oxide (bPDSOI) which used the new process presented in this thesis, We find that the device with block oxide embedded on body is not only obtain good short-channel effects immunity but also reduce leakage of the P-N junction between source/drain and the body and increase the gate controlability on the channel region. Moreover, it can decrease power consumption and raise the operation speed of the 1T-DRAM. Compare to the PDSOI DRAM to carry out 10 μA programming window, the power consumption of the new 1T-DRAM is diminished 39% of write “1” and 25% of write “0”. Furthermore, the energy consumption during memory operation is only 23% compared to that of the conventional PDSOI DRAM and it can short the operation time but achieve a long retention time.
目次 Table of Contents
第一章 導論 --------------------------------------------------------------------------- 1
第二章 阻擋氧化層之新自我對齊製程設計 ------------------------------------ 10
2-1 理想模擬製程 --------------------------------------------------------- 10
2-2 實際製作製程 --------------------------------------------------------- 12
第三章 結果與討論 ------------------------------------------------------------------ 13
3-1 模擬結果 --------------------------------------------------------------- 13
3-1-0模擬所使用的物理Model說明 ------------------------------- 13
3-1-1 N-type bPDSOI特性探討 -------------------------------------- 15
3-1-2 N-type bPDSOI之1T-DRAM的應用 ------------------------ 24
3-2 N-type bPDSOI實作結果與討論 ----------------------------------- 39
第四章 結論 --------------------------------------------------------------------------- 45
第五章 未來發展 --------------------------------------------------------------------- 46
參考文獻 ------------------------------------------------------------------------------- 47
附錄A bPDSOI Runcard ------------------------------------------------------------ 51
參考文獻 References
[01] Y. Eng, J. Lin, “Self-aligned Block Oxide Process for bFDSOI Devices,” on ICSICT, June. 2007, pp. 1-4.
[02] G. G. Shahidi, “Evolution of CMOS Technology at 32 nm and Beyond,” Custom Integrated Circuits Conference, Sep. 2007, pp. 413-416.
[03] N. Z. Butt, M. A. Alam, “Scaling Limits of Double-Gate and Surround-Gate Z-RAM Cells,” IEEE Trans. on Electron Devices, Volume 54, Issue 9, pp. 2255-2262, Sep. 2007.
[04] N. Butt, M. A. Alam, “Scaling Limits of Capacitorless Double Gate DRAM Cell,” Simulation of Semiconductor Processes and Devices, Sep. 2006, pp. 302-305.
[05] A. Nitayama, Y. Kohyama, K. Hieda, “Future directions for DRAM memory cell technology,” in IEDM Tech. Dig., Dec. 1998, pp. 355-358.
[06] F. Morishita, I. Hayashi, T. Gyohten, H. Noda, T. Ipposhi, H. Shimano, K. Dosaka, K. Arimoto, “ A Configurable Enhanced TTRAM Macro for System-Level Power Management Unified Memory,” IEEE J. Solid State Circuits, Volume 42, Issue 4, pp. 853-861, April 2007.
[07] M. Bawedin, S. Cristoloveanu, D. Flandre, “Innovating SOI memory devices based on floating-body effects,” IEEE J. Solid State Circuits, Volume 51, pp. 1252-1262, 2007.
[08] M. R. TACK, M. GAO, C. L. CLAEYS, G. J. DECLERCK, “The multistable charge-controlled memory effect in SOI MOS transistors at low temperatures,” IEEE Trans. on Electron Devices, Volume 37, Issue 5, pp. 1373-1382, May 1990.
[09] T. Ohsawa, K. Fujita, T. Higashi, Y. Iwata, T. Kajiyama, Y. Asao, K. Sunouchi, “Memory design using a one-transistor gain cell on SOI,” IEEE J. Solid State Circuits, Volume 37, Issue 11, pp. 1510-1522, Nov. 2002.
[10] H. Wann, C. Hu, ” A capacitorless DRAM cell on SOI substrate,” SOI Conference, in IEDM Tech. Dig., Dec. 1993, pp. 635-638.
[11] S. Okhonin, M. Nagoga, J. M. Sallese, P. Fazan, “A capacitor-less 1T-DRAM cell,” IEEE Electron Device Lett., Volume 23, Issue 2, pp. 85-87, Feb. 2002.
[12] T. Hamamoto, Y. Minami, T. Shino, N. Kusunoki, H. Nakajima, M. Morikado, T. Yamada, K. Inoh, A. Sakamoto, T. Higashi, K. Fujita, K. Hatsuda, T. Ohsawa, A. Nitayama, “A Floating-Body Cell Fully Compatible With 90-nm CMOS Technology Node for a 128-Mb SOI DRAM and Its Scalability,” IEEE Trans. on Electron Devices, Volume 54, Issue 3, pp. 563-571, March 2007.
[13] T. Shino, N. Kusunoki, T. Higashi, T. Ohsawa, K. Fujita, K. Hatsuda,.N. Ikumi, F. Matsuoka, Y. Kajitani, R. Fukuda, Y. Watanabe, Y. Minami, A. Sakamoto, J. Nishimura, H. Nakajima, M. Morikado, K. Inoh, T. Hamamoto, A. Nitayama, “Floating Body RAM Technology and its Scalability to 32nm Node and Beyond,” in IEDM Tech. Dig., Dec. 2006, pp. 1-4.
[14] A. J. Auberton-Herve, “Proceedings of the fourth international Symposium on Silicon-On-Insulator Technology and Device,” ed. By D.N. Schmidt, Vol. 90-6, The Electrochemical Society, p. 544, 1990.
[15] G. Gouya, P. Malinge, B. Garni, F. Genevaux, R. Ferrant, S. Puget, V. Gravoulet, O. Bonnaud, “1T-capacitorless bulk memory: Scalability and signal impact,” on ESSDERC, pp. 330-333, Sep. 2007.
[16] T. Tanaka, E. Yoshida, T. Miyashita, “Scalability study on a capacitorless 1T-DRAM: from single-gate PD-SOI to double-gate FinDRAM,” in IEDM Tech. Dig., Dec. 2004, pp. 919-922.
[17] T. Shino, T. Higashi, K. Fujita, T. Ohsawa, Y. Minami, T. Yamada, M. Morikado, H. Nakajima, K. Inoh, T. Hamamoto, A. Nitayama, “Highly scalable FBC (floating body cell) with 25nm BOX structure for embedded DRAM applications,” Symposium on VLSI Technology Digest, pp. 132-133, 2004.
[18] F. Morishita, H. Noda, T. Gyohten, M. Okamoto+, T. Ipposhi, S. Maegawa, K. Dosaka, K. Arimoto, “A capacitorless twin-transistor random access memory (TTRAM) on SOI,” Custom Integrated Circuits Conference, Sep. 2005, pp. 435-438.
[19] T. Shino, T. Ohsawa, T. Higashi, K. Fujita, N. Kusunoki, Y. Minami, M. Morikado, H. Nakajima, K. Inoh, T. Hamamoto, A. Nitayama, “Operation voltage dependence of memory cell characteristics in fully depleted floating-body cell,” IEEE Trans. on Electron Devices, Volume 52, Issue 10, pp. 2220-2226, Oct. 2005.
[20] K. Nishiguchi, A. Fujiwara, Y. Ono, H. Inokawa, Y. Takahashi, “Long Retention of Gain-Cell Dynamic Random Access Memory With Undoped Memory Node,” IEEE Electron Device Lett., Volume 28, Issue 1, pp. 48-50, Jan. 2007.
[21] C. Kuo, T. King, C. Hu, “A capacitorless double gate DRAM technology for sub-100-nm embedded and stand-alone memory applications,” IEEE Trans. on Electron Devices, Volume 50, Issue 12, pp. 2408-2416, Oct. 2003.
[22] M. G. Ertosun, H. Cho, P. Kapur, K. C. Saraswat, “A Nanoscale Vertical Double-Gate Single-Transistor Capacitorless DRAM,” IEEE Electron Device Lett., Volume 29, Issue 6, pp. 615-617, June. 2008.
[23] M. Chan, F. F. Assaderaghi, S. A. Parke, S. S. Yuen, C. Hu, P. Ko, “Recessed channel structure for fabricating ultrathin SOI MOSFET with low series resistance,” IEEE Electron Device Lett., Volume 15, Issue 1, pp. 22–24, Jan. 1994.
[24] I. Ban, U. E. Avci, U. Shah, C. E. Barns, D. L. Kencke, P. Chang, “Floating Body Cell with Independently-Controlled Double Gates for High Density Memory,” in IEDM Tech. Dig., Dec. 2006, pp. 1-4.
[25] D. Bae, S. Kim, Y. Choi, “Low-Cost and Highly Heat Controllable Capacitorless PiFET (Partially Insulated FET) 1T DRAM for Embedded Memory,” IEEE Trans. on Nanotechnology, Volume 8, Issue 1, pp. 100-105, Jan. 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.58.150.59
論文開放下載的時間是 校外不公開

Your IP address is 13.58.150.59
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code