Responsive image
博碩士論文 etd-0804109-181200 詳細資訊
Title page for etd-0804109-181200
論文名稱
Title
泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於穀物樣品中微量元素之分析應用
none
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
141
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-21
繳交日期
Date of Submission
2009-08-04
關鍵字
Keywords
砷、硒、電熱式揮發、微量元素、鋅、銅、動態反應室、感應耦合電漿質譜儀、穀物、鉻、鐵
trace elements, ETV, Se, As, Zn, Cu, Fe, Cr, ICP-MS, DRC, cereals
統計
Statistics
本論文已被瀏覽 5667 次,被下載 2350
The thesis/dissertation has been browsed 5667 times, has been downloaded 2350 times.
中文摘要
本研究是以電熱式揮發感應耦合電漿質譜儀(ETV-ICP-MS,Electrothermal Vaporization Inductively Coupled Plasma Mass Spectrometry)偵測穀物樣品中之微量元素,以ETV作為樣品輸入裝置時,具有樣品傳輸效率佳、所需樣品體積少等優點,並利用其昇溫程式可有效地降低氧化物與氫氧化物所造成的干擾;再配合超音波泥漿取樣法(USS,Ultrasonic Slurry Sampling)的使用,可減少樣品前處理的過程,因而可降低在前處理過程中汙染物的導入。
研究分為兩個部分,第一部分為利用泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀(USS-ETV-ICP-MS)測定穀物樣品中鉻、鐵、銅、鋅、砷及硒等元素的含量,並配合動態反應室(DRC,Dynamic Reaction Cell)的使用,以降低因基質或輸送氣體所造成的光譜干擾。研究中對修飾劑、DRC系統的條件、泥漿樣品的配製及儀器的設定條件等因素進行探討。由實驗結果發現,以thioacetamide(TAC)當作修飾劑時可以有效提升分析物的訊號;在DRC系統中,選擇以甲烷當作反應氣體來減輕實驗中因樣品基質及輸送氣體所產生的光譜干擾。分析條件最適化後,將選擇對NIST SRM 1567a、NIST SRM 1568a及市售麵粉及米樣品進行定量分析,並比對不同分析方法之定量結果,驗證以USS- ETV- ICP-MS分析穀物樣品中鉻、鐵、銅、鋅、砷及硒的可行性。此方法對鉻、鐵、銅、鋅、砷及硒的方法偵測極限分別為1.3、18、4.0、12、2.0及2.1 ng g-1。
第二部分則是使用USS-ETV-ICP-MS對穀物樣品中更多微量元素(釩、鉻、鈷、鎳、銅、鋅、硒、鎘、汞及鉛)的同時分析。在實驗中使用8-HQ(8-hydroxyquinoline-5-sulfonic acid)、Triton X-100及較低的揮發溫度(1900℃),使得分析物在泥漿與水溶液中具有相似的靈敏度,因此可使用水溶液校正曲線法定量,比起傳統以標準添加法定量,可減少樣品配製及分析時所需的時間。在各分析條件最適化後,將分析物分成兩組,一組為無干擾或利用ETV之昇溫程式即可將其干擾去除之元素(即釩、鈷、鎳、鎘、汞及鉛)是於標準模式下偵測;另一組為需要以DRC系統去除干擾之元素(即鉻、銅、鋅及硒)是於DRC模式下偵測。最後,將此系統應用於穀物樣品的定量,對測定釩、鉻、鈷、鎳、銅、鋅、硒、鎘、汞及鉛的方法偵測極限分別為1.3、2.1、3.6、4.3、6.8、16、1.7、0.6、0.8及2.6 ng g-1。
Abstract
none
目次 Table of Contents
論文提要................................................................................................... I
謝誌..........................................................................................................III
目錄..........................................................................................................IV
圖表目錄.................................................................................................VII
第一章 泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀於穀物樣 品中鉻、鐵、銅、鋅、砷及硒等元素之分析應用
壹、前言 .............................................................................................. 1
一、研究背景 ............................................................................... 1
二、鉻、鐵、銅、鋅、砷及硒之個論....................................... 5
三、超音波泥漿取樣法結合電熱式揮發樣品輸入系統簡介 .. 7
四、動態反應室(DRC)系統簡介 ........................................ 10
五、同位素稀釋法 ..................................................................... 13
貳、實驗部分 .................................................................................... 16
一、儀器裝置及操作條件 ......................................................... 16
二、試劑藥品及溶液的配製 ..................................................... 22
三、泥漿樣品的製備與消化 ..................................................... 27
參、結果與討論 ................................................................................ 29
一、修飾劑的選擇 ..................................................................... 29
二、DRC系統之最佳化 ........................................................... 38
三、酸對分析物訊號的影響 ..................................................... 44
四、稀釋倍數的探討 ................................................................. 47
五、界面活性劑對分析物訊號的影響..................................... 49
六、熱解溫度(Pyrolysis Temperature)及揮發溫度 (Vaporization Temperature)的選擇 .............................. 49
七、光譜(同質量)干擾 ......................................................... 52
八、校正曲線 ............................................................................. 56
九、樣品定量分析 ..................................................................... 59
肆、結論 ............................................................................................ 68
伍、參考文獻 .................................................................................... 69
第二章 泥漿取樣法結合電熱式揮發感應耦合電漿質譜儀以水溶液 檢量線法定量穀物樣品中微量元素之分析應用
壹、前言 ............................................................................................ 81
一、研究背景 ............................................................................. 81
二、釩、鈷、鎳、鎘、汞及鉛之個論..................................... 83
貳、實驗部分 .................................................................................... 86
一、儀器裝置及操作條件 ......................................................... 86
二、試劑藥品及溶液的配製 ..................................................... 90
三、水溶液標準品與泥漿樣品靈敏度的比較 ........................ 92
四、水溶液校正曲線及泥漿樣品的製備與消化 .................... 94
參、結果與討論 ................................................................................ 98
一、修飾劑的選擇 ..................................................................... 98
二、界面活性劑對分析物訊號的影響................................... 103
三、酸與鹼對分析物訊號的影響 ........................................... 105
四、揮發溫度(Vaporization Temperature)的選擇 ............ 108
五、稀釋倍數的探討 ............................................................... 113
六、光譜(同質量)干擾 ....................................................... 113
七、樣品定量分析 ................................................................... 118
肆、結論 .......................................................................................... 125
伍、參考文獻 .................................................................................. 126
參考文獻 References
1.Matusiewicz, H.; Mikolajczak, M. Determination of As, Sb, Se, Sn and Hg in beer and wort by direct hydride generation sample introduction-electrothermal AAS J. Anal. At. Spectrom. 2001, 16 (6), 652-657.
2.Jacob, P.; Berndt, H., Online element determination in biological and environmental samples by flame AAS coupled with a high-temperature/high-pressure flow digestion system. J. Anal. At. Spectrom. 2002, 17 (12), 1615-1620.
3.Matusiewicz, H.; Mroczkowska, M., Hydride generation from slurry samples after ultrasonication and ozonation for the direct determination of trace amounts of As(III) and total inorganic arsenic by their in situ trapping followed by graphite furnace atomic absorption spectrometry. J. Anal. At. Spectrom. 2003, 18 (7), 751-761.
4.Aleixo, P. C.; Santos, D.; Tomazelli, A. C.; Rufini, I. A.; Berndt, H.; Krug, F. J., Cadmium and lead determination in foods by beam injection flame furnace atomic absorption spectrometry after ultrasound-assisted sample preparation. Anal. Chim. Acta 2004, 512 (2), 329-337.
5.Araujo, R. G. O.; Oleszczuk, N.; Rampazzo, R. T.; Costa, P. A.; Silva, M. M.; Vale, M. G. R.; Welz, B.; Ferreira, S. L. C., Comparison of direct solid sampling and slurry sampling for the determination of cadmium in wheat flour by electrothermal atomic absorption spectrometry. Talanta 2008, 77 (1), 400-406.
6.Jiang, H. M.; Qin, Y. C.; Hu, B., Dispersive liquid phase microextraction (DLPME) combined with graphite furnace atomic absorption spectrometry (GFAAS) for determination of trace Co and Ni in environmental water and rice samples. Talanta 2008, 74 (5), 1160-1165.
7.Yan, X. P.; Sperling, M.; Welz, B., Determination of (ultra) trace amounts of lead in biological materials by on-line coupling flow injection microcolumn separation and preconcentration to electrothermal atomic absorption spectrometry using a macrocycle immobilized silica gel sorbent. J. Anal. At. Spectrom. 1999, 14 (10), 1625-1629.
8.Yuan, C. G.; Jiang, G. B.; He, B., Evaluation of the extraction methods for arsenic speciation in rice straw, Oryza sativa L., and analysis by HPLC-HG-AFS. J. Anal. At. Spectrom. 2005, 20 (2), 103-110.
9.Reyes, M. N. M.; Cervera, M. L.; Campos, R. C.; de la Guardia, M. In Determination of arsenite, arsenate, monomethylarsonic acid and dimethylarsinic acid in cereals by hydride generation atomic fluorescence spectrometry, Spectrochim. Acta B 2007, 62(9), 1078-1082.
10.Signes-Pastor, A. J.; Mitra, K.; Sarkhel, S.; Hobbes, M.; Burlo, F.; De Groot, W. T.; Carbonell-Barrachina, A. A., Arsenic Speciation in Food and Estimation of the Dietary Intake of Inorganic Arsenic in a Rural Village of West Bengal, India, J. Agric. Food Chem. 2008, 56 (20), 9469-9474.
11.Yu, Y. L.; Du, Z.; Chen, M. L.; Wang, J. H., A miniature lab-on-valve atomic fluorescence spectrometer integrating a dielectric barrier discharge atomizer demonstrated for arsenic analysis. J. Anal. At. Spectrom. 2008, 23 (4), 493-499.
12.Matusiewicz, H.; Kopras, M., Simultaneous determination of hydride forming elements (As, Bi, Ge, Sb, Se) and Hg in biological and environmental reference materials by electrothermal vaporization-microwave induced plasma-optical emission spectrometry with their in situ trapping in a graphite furnace. J. Anal. At. Spectrom. 2003, 18 (12), 1415-1425.
13.Grotti, M.; Lagomarsino, C.; Frache, R., Multivariate study in chemical vapor generation for simultaneous determination of arsenic, antimony, bismuth, germanium, tin, selenium, tellurium and mercury by inductively coupled plasma optical emission spectrometry. J. Anal. At. Spectrom. 2005, 20 (12), 1365-1373.
14.Judprasong, K.; Ornthai, M.; Siripinyanond, A.; Shiowatana, J. A continuous-flow dialysis system with inductively coupled plasma optical emission spectrometry for in vitro estimation of bioavailability, J. Anal. At. Spectrom. 2005, 20(11), 1191-1196.
15.Hernandez, P. C.; Tyson, J. F.; Uden, P. C.; Yates, D. Determination of selenium by flow injection hydride generation inductively coupled plasma optical emission spectrometry, J. Anal. At. Spectrom. 2007, 22(3), 298-304.
16.Cernohorsky, T.; Krejcova, A.; Pouzar, M.; Vavrusova, L., Elemental analysis of flour-based ready-oven foods by slurry sampling inductively coupled plasma optical emission spectrometry. Food Chem. 2008, 106 (3), 1246-1252.
17.Sturgeon, R. E.; Gregoire, D. C., Electrothermal vaporization inductively-coupled plasma-mass spectrometry detection of As, Sb, Se, Bi and Sn following preconcentration by in situ collection of their hydrides. Spectrochim. Acta B 1994, 49 (12-14), 1335-1345.
18.Park, C. J.; Suh, J. K., Determination of trace elements in rice flour by isotope dilution inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1997, 12 (5), 573-577.
19.Feng, X. B.; Wu, S. L.; Wharmby, A.; Wittmeier, A., Microwave digestion of plant and grain standard reference materials in nitric and hydrofluoric acids for multi-elemental determination by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1999, 14 (6), 939-946.
20.Pozebon, D.; Dressler, V. L.; Curtius, A. J., Determination of volatile elements in biological materials by isotopic dilution ETV-ICP-MS after dissolution with tetramethylammonium hydroxide or acid digestion. Talanta 2000, 51 (5), 903-911.
21.Heitkemper, D. T.; Vela, N. P.; Stewart, K. R.; Westphal, C. S., Determination of total and speciated arsenic in rice by ion chromatography and inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001, 16 (4), 299-306.
22.Baba, K.; Watanabe, E.; Eun, H.; Ishizaka, M., Direct determination of cadmium in rice flour by laser ablation-ICP-MS. J. Anal. At. Spectrom. 2003, 18 (12), 1485-1488.
23.Li, P. C.; Jiang, S. J., Electrothermal vaporization inductively coupled plasma-mass spectrometry for the determination of Cr, Cu, Cd, Hg and Pb in rice flour. Anal. Chim. Acta 2003, 495 (1-2), 143-150.
24.Vassileva, E.; Quetel, C. R., Certification measurement of the cadmium, copper and lead contents in rice using isotope dilution inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2004, 519 (1), 79-86.
25.Hu, W. L.; Hu, B.; Jiang, Z. C., On-line preconcentration and separation of Co, Ni and Cd via capillary microextraction on ordered mesoporous alumina coating and determination by inductively plasma mass spectrometry (ICP-MS). Anal. Chim. Acta 2006, 572 (1), 55-62.
26.Inagaki, K.; Narukawa, T.; Yarita, T.; Takatsu, A.; Okamoto, K.; Chiba, K., Determination of cadmium in grains by isotope dilution ICP-MS and coprecipitation using sample constituents as carrier precipitants. Anal. Bioanal. Chem. 2007, 389 (3), 691-696.
27.Baba, K.; Arao, T.; Maejima, Y.; Watanabe, E.; Eun, H.; Ishizaka, M., Arsenic speciation in rice and soil containing related compounds of chemical warfare agents. Anal. Chem. 2008, 80 (15), 5768-5775.
28.Kuo, C. Y.; Jiang, S. J., Determination of selenium and tellurium compounds in biological samples by ion chromatography dynamic reaction cell inductively coupled plasma mass spectrometry. J. Chromatogr. A 2008, 1181 (1-2), 60-66.
29.Lin, L. Y.; Chang, L. F.; Jiang, S. J., Speciation analysis of mercury in cereals by liquid chromatography chemical vapor generation inductively coupled plasma-mass spectrometry. J. Agric. Food Chem. 2008, 56 (16), 6868-6872.
30.Narukawa, T.; Inagaki, K.; Kuroiwa, T.; Chiba, K., The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS. Talanta 2008, 77 (1), 427-432.
31.Mar, J. L. G.; Reyes, L. H.; Rahman, G. A. M.; Kingston, H. M. S., Simultaneous Extraction of Arsenic and Selenium Species From Rice Products by Microwave-Assisted Enzymatic Extraction and Analysis by Ion Chromatography-inductively Coupled Plasma-Mass Spectrometry. J. Agric. Food Chem. 2009, 57 (8), 3005-3013.
32.Nardi, E. P.; Evangelista, F. S.; Tormen, L.; SaintPierre, T. D.; Curtius, A. J.; de Souza, S. S.; Barbosa, F., The use of inductively coupled plasma mass spectrometry (ICP-MS) for the determination of toxic and essential elements in different types of food samples. Food Chem. 2009, 112 (3), 727-732.
33.Xie, H. L.; Huang, K. L.; Liu, J. C.; Nie, X. D.; Fu, L. Determination of trace elements in residual oil by high-resolution inductively coupled plasma mass spectrometry, Anal. Bioanal. Chem. 2009, 393 (8), 2075-2080.
34.Ambushe, A. A.; McCrindle, R. I.; McCrindle, C. M. E., Speciation of chromium in cow's milk by solid-phase extraction/dynamic reaction cell inductively coupled plasma mass spectrometry( DRC-ICP-MS). J. Anal. At. Spectrom. 2009, 24 (4), 502-507.
35.Ma, H. L.; Tanner, P. A., Speciated isotope dilution analysis of Cr(III) and Cr(VI) in water by ICP-DRC-MS. Talanta 2008, 77 (1), 189-194.
36.D'Ilio, S.; Petrucci, F.; D'Amato, M.; Di Gregorio, M.; Senofonte, O.; Violante, N., Method validation for determination of arsenic, cadmium, chromium and lead in milk by means of dynamic reaction cell inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2008, 624 (1), 59-67.
37.Rodrigues, J. L.; Nunes, J. A.; Batista, B. L.; De Souza, S. S.; Barbosa, F., A fast method for the determination of 16 elements in hair samples by inductively coupled plasma mass spectrometry (ICP-MS) with tetramethylammonium hydroxide solubilization at room temperature. J. Anal. At. Spectrom. 2008, 23 (7), 992-996.
38.Du, Z. Y.; Houk, R. S., Attenuation of metal oxide ions in inductively coupled plasma mass spectrometry with hydrogen in a hexapole collision cell. J. Anal. At. Spectrom. 2000, 15 (4), 383-388.
39.Chang, Y. L.; Jiang, S. J., Determination of chromium in water and urine by reaction cell inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2001, 16 (12), 1434-1438.
40.Chang, Y. L.; Jiang, S. J., Determination of chromium species in water samples by liquid chromatography-inductively coupled plasma-dynamic reaction cell-mass spectrometry. J. Anal. At. Spectrom. 2001, 16 (8), 858-862.
41.Ho, C. Y.; Jiang, S. J., Determination of Cr, Zn, Cd and Pb in milk powder by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2002, 17 (7), 688-692.
42.Bernhardt, J.; Buchkamp, T.; Hermann, G.; Lasnitschka, G., Transport efficiencies and analytical determinations with electrothermal vaporization employing electrostatic precipitation and electrothermal atomic spectroscopy. Spectrochim. Acta B 1999, 54 (13), 1821-1829.
43.Resano, M.; Garcia-Ruiz, E.; Moens, L.; Vanhaecke, F., Solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry for the direct determination of traces of iodine. J. Anal. At. Spectrom. 2005, 20 (2), 81-87.
44.Cho, H. H.; Kim, Y. J.; Jo, Y. S.; Kitagawa, K.; Arai, N.; Lee, Y. I., Application of laser-induced breakdown spectrometry for direct determination of trace elements in starch-based flours. J. Anal. At. Spectrom. 2001, 16 (6), 622-627.
45.Maia, S. M.; Vale, M. G. R.; Welz, B.; Curtius, A. J., Feasibility of isotope dilution calibration for the determination of thallium in sediment using slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim. Acta B 2001, 56 (7), 1263-1275.
46.Miller-Ihli, N. J.; Baker, S. A., Microhomogeneity assessments using ultrasonic slurry sampling coupled with electrothermal vaporization isotope dilution inductively coupled plasma mass spectrometry. Spectrochim. Acta B 2001, 56 (9), 1673-1686.
47.Maia, S. M.; Pozebon, D.; Curtius, A. J., Determination of Cd, Hg, Pb and Tl in coal and coal fly ash slurries using electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution. J. Anal. At. Spectrom. 2003, 18 (4), 330-337.
48.Dias, L. F.; Miranda, G. R.; Saint'Pierre, T. D.; Maia, S. M.; Frescura, V. L. A.; Curtius, A. J., Method development for the determination of cadmium, copper, lead, selenium and thallium in sediments by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry and isotopic dilution calibration. Spectrochim. Acta B 2005, 60 (1), 117-124.
49.Ni, J. L.; Liu, C. C.; Jiang, S. J., Determination of Ga, Ge, As, Se and Sb in fly ash samples by ultrasonic slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2005, 550 (1-2), 144-150.
50.Volynsky, A. B.; de Loos-Vollebregt, M. T. C., Vaporization of Pb, As and Ga alone and in the presence of Pd modifier studied by electrothermal vaporization-inductively coupled mass spectrometry. Spectrochim. Acta B 2005, 60 (11), 1432-1441.
51.Li, L.; Hu, B.; Xia, L. B.; Jiang, Z. C., Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction. Talanta 2006, 70 (2), 468-473.
52.Li, P. C.; Jiang, S. J., Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Cd and Pb in plastics. Anal. Bioanal. Chem. 2006, 385 (6), 1092-1097.
53.Resano, M.; Aramendia, M.; Devos, W.; Vanhaecke, F. Direct multi-element analysis of a fluorocarbon polymer via solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom. 2006, 21(9), 891-898.
54.Resano, M.; Aramendia, M.; Vanhaecke, F., Solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry for the direct determination of traces of boron in biological materials using isotope dilution for calibration. J. Anal. At. Spectrom. 2006, 21 (10), 1036-1044.
55.Lam, R.; Salin, E. D., Direct multielement determination of human hair by induction-heating electrothermal vaporization with ICP-MS. J. Anal. At. Spectrom. 2007, 22 (11), 1430-1433.
56.Peschel, B. U.; Herdering, W.; Broekaert, J. A. C., A radiotracer study on the volatilization and transport effects of thermochemical reagents used in the analysis of alumina powders by slurry electrothermal vaporization inductively coupled plasma mass spectrometry. Spectrochim. Acta B 2007, 62 (2), 109-115.
57.Tseng, Y. J.; Liu, C. C.; Jiang, S. J., Slurry sampling electrothermal vaporization inductively coupled plasma Mass spectrometry for the determination of As and Se in soil and sludge. Anal. Chim. Acta 2007, 588 (2), 173-178.
58.Tseng, Y. J.; Tsai, Y. D.; Jiang, S. J., Electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples. Anal. Bioanal. Chem. 2007, 387 (8), 2849-2855.
59.Aramendia, M.; Resano, M.; Vanhaecke, F., Determination of toxic trace impurities in titanium dioxide by solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2009, 24 (1), 41-50.
60.Gil, S.; de Loos-Vollebregt, M. T. C.; Bendicho, C., Optimization of a single-drop microextraction method for multielemental determination by electrothermal vaporization inductively coupled plasma mass spectrometry following in situ vapor generation. Spectrochim. Acta B 2009, 64 (3), 208-214.
61.Anthemidis, A. N.; Pliatsika, V. G., On-line slurry formation and nebulization for inductively coupled plasma atomic emission spectrometry. Multi-element analysis of cocoa and coffee powder samples. J. Anal. At. Spectrom. 2005, 20 (11), 1280-1286.
62.Felipe-Sotelo, M.; Cal-Prieto, M. J.; Carlosena, A.; Andrade, J. M.; Fernandez, E.; Prada, D., Multivariate optimization for molybdenum determination in environmental solid samples by slurry extraction-ETAAS. Anal. Chim. Acta 2005, 553 (1-2), 208-213.
63.Felipe-Sotelo, M.; Cal-Prieto, M. J.; Gomez-Carracedo, M. P.; Andrade, J. M.; Carlosena, A.; Prada, D., Handling complex effects in slurry-sampling-electrothermal atomic Zn absorption spectrometry by multivariate calibration. Anal. Chim. Acta 2006, 571 (2), 315-323.
64.Munoz, M. L.; Aller, A. J., Appraisal of the chemical modification process for the determination of lead by ultrasonic slurry sampling-electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom. 2006, 21 (3), 329-337.
65.Lopez-Garcia, I.; Rivas, R. E.; Hernandez-Cordoba, M. Use of sodium tungstate as a permanent chemical modifier for slurry sampling electrothermal atomic absorption spectrometric determination of indium in soils, Anal. Bioanal. Chem. 2008, 391 (4), 1469-1474.
66.Bibak, A.; Sturup, S.; Haahr, V.; Gundersen, P.; Gundersen, V., Concentrations of 50 major and trace elements in Danish agricultural crops measured by inductively coupled plasma mass spectrometry. 3. Potato (Solanum tuberosum Folva). J. Agr. Food Chem. 1999, 47 (7), 2678-2684.
67.Marchante-Gayon, J. M.; Muniz, C. S.; Alonso, J. I. G.; Sanz-Medel, A. Multielemental trace analysis of biological materials using double focusing inductively coupled plasma mass spectrometry detection Anal. Chim. Acta 1999, 400(SI), 307-320.
68.Falandysz, J.; Szymczyk, K.; Ichihashi, H.; Bielawski, L.; Gucia, M.; Frankowska, A.; Yamasaki, S. I., ICP/MS and ICP/AES elemental analysis (38 elements) of edible wild mushrooms growing in Poland. Food Addit. and Contam. 2001, 18 (6), 503-513.
69.D'Ilio, S.; Alessandrelli, M.; Cresti, R.; Forte, G.; Caroli, S. Arsenic content of various types of rice as determined by plasma-based techniques Microchem. J. 2002, 73(1-2), 195-201.
70.行政院衛生署食品資訊網 http://food.doh.gov.tw/foodnew.
71.Velasco-Reynold, C.; Navarro-Alarcon, M.; De La Serrana, H. L. G.; Perez-Valero, V.; Lopez-Martinez, M. C., Determination of daily dietary intake of chromium by duplicate diet sampling: In vitro availability study. Food Addit. and Contam.B 2008, 25 (5), 604-610.
72.Jiang, S. J.; Houk, R. S.; Stevens, M. A., Alleviation of overlap interferences for determination of potassium isotope ratio by inductively coupled plasma mass-spectrometry, Anal.Chem. 1988, 60 (11), 1217-1221.
73.Field, M. P.; Cullen, J. T.; Sherrell, R. M. Direct determination of 10 trace metals in 50 mu L samples of coastal seawater using desolvating micronebulization sector field ICP-MS, J. Anal. At. Spectrom. 1999, 14 (9), 1425-1431.
74.Tanner, S. D.; Baranov, V. I.; Bandura, D. R., Reaction cells and collision cells for ICP-MS: a tutorial review. Spectrochim. Acta B 2002, 57 (9), 1361-1452.
75.黎伯謙 "泥漿取樣法結合電熱式揮發感應偶合電漿質譜儀於米及塑膠樣品中微量元素分析之應用", 中山大學碩士論文, 民國92年6月.
76.曾彥傑 "泥漿取樣法結合電熱式揮發感應偶合電漿質譜儀於土壤及生物樣品中微量元素分析之應用", 中山大學碩士論文, 民國95年7月.
77.陳淑楓 "泥漿取樣法結合電熱式揮發感應偶合電漿質譜儀於魚肉和土壤樣品中微量元素分析之應用", 中山大學碩士論文, 民國87年7月.
78.Brenner, I. B.; Zander, A.; Kim, S., Direct determination of lead in gasoline using emulsification and argon and argon-oxygen inductively coupled plasma atomic emission spectrometry. J. Anal. At. Spectrom.1996, 11 (2), 91-97.
79.Coedo, A. G.; Dorado, T.; Padilla, I.; Maibusch, R.; Kuss, H. M., Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis. Spectrochim. Acta B 2000, 55 (2), 185-196.
80.蔡育端 "動力反應室感應耦合電漿質譜儀於水樣品中砷與硒之物種分析及魚肉樣品中微量元素分析之應用", 中山大學碩士論文, 民國92年7月.
81.何巧瑜 "泥漿取樣法結合電熱式揮發感應偶合電漿質譜儀於奶粉及土壤樣品中微量元素分析之應用", 中山大學碩士論文, 民國91年6月.

1. Feng, X. B.; Wu, S. L.; Wharmby, A.; Wittmeier, A., Microwave digestion of plant and grain standard reference materials in nitric and hydrofluoric acids for multi-elemental determination by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1999, 14 (6), 939-946.
2. Yan, X. P.; Sperling, M.; Welz, B., Determination of (ultra) trace amounts of lead in biological materials by on-line coupling flow injection microcolumn separation and preconcentration to electrothermal atomic absorption spectrometry using a macrocycle immobilized silica gel sorbent. J. Anal. At. Spectrom. 1999, 14 (10), 1625-1629.
3. Baba, K.; Watanabe, E.; Eun, H.; Ishizaka, M., Direct determination of cadmium in rice flour by laser ablation-ICP-MS. J. Anal. At. Spectrom. 2003, 18 (12), 1485-1488.
4. Cho, H. H.; Kim, Y. J.; Jo, Y. S.; Kitagawa, K.; Arai, N.; Lee, Y. I., Application of laser-induced breakdown spectrometry for direct determination of trace elements in starch-based flours. J. Anal. At. Spectrom. 2001, 16 (6), 622-627.
5. Ho, C. Y.; Jiang, S. J., Determination of Cr, Zn, Cd and Pb in milk powder by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2002, 17 (7), 688-692.
6. Li, P. C.; Jiang, S. J., Electrothermal vaporization inductively coupled plasma-mass spectrometry for the determination of Cr, Cu, Cd, Hg and Pb in rice flour. Anal. Chim. Acta 2003, 495 (1-2), 143-150.
7. Nowka, R.; Marr, I. L.; Ansari, T. M.; Muller, H., Direct analysis of solid samples by GFAAS - determination of trace heavy metals in barytes. Fresenius J. Anal. Chem. 1999, 364 (6), 533-540.
8. Vanhaecke, F.; Gelaude, I.; Moens, L.; Dams, R., Solid sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the direct determination of Hg in sludge samples. Anal. Chim. Acta 1999, 383 (3), 253-261.
9. Vale, M. G. R.; Silva, M. M.; Welz, B.; Nowka, R., Control of spectral and non-spectral interferences in the determination of thallium in river and marine sediments using solid sampling electrothermal atomic absorption spectrometry. J. Anal. At. Spectrom. 2002, 17 (1), 38-45.
10. Sahuquillo, A.; Rauret, G.; Rehnert, A.; Muntau, H., Solid sample graphite furnace atomic absorption spectroscopy for supporting arsenic determination in sediments following a sequential extraction procedure. Anal. Chim. Acta 2003, 476 (1), 15-24.
11. Lafleur, J. P.; Lam, R.; Chan, H. M.; Salin, E. D., Induction heating-electrothermal vaporization for direct mercury analysis of a single human hair strand by inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2005, 20 (12), 1315-1317.
12. Detcheva, A.; Grobecker, K. H. Determination of Hg, Cd, Mn, Pb and Sn in seafood by solid sampling Zeeman atomic absorption spectrometry. Spectrochim. Acta B 2006, 61 (4), 454-459.
13. Lam, R.; Salin, E. D., Direct multielement determination of human hair by induction-heating electrothermal vaporization with ICP-MS. J.
Anal. At. Spectrom. 2007, 22 (11), 1430-1433.
14. Tseng, Y. J.; Liu, C. C.; Jiang, S. J., Slurry sampling electrothermal vaporization inductively coupled plasma Mass spectrometry for the determination of As and Se in soil and sludge. Anal. Chim. Acta 2007, 588 (2), 173-178.
15. Tseng, Y. J.; Tsai, Y. D.; Jiang, S. J., Electrothermal vaporization dynamic reaction cell inductively coupled plasma mass spectrometry for the determination of Fe, Co, Ni, Cu, and Zn in biological samples. Anal. Bioanal. Chem. 2007, 387 (8), 2849-2855.
16. Li, P. C.; Jiang, S. J., Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for the determination of Cr, Cd and Pb in plastics. Anal. Bioanal. Chem. 2006, 385 (6), 1092-1097.
17. Liao, H. C.; Jiang, S. J., EDTA as the modifier for the determination of Cd, Hg and Pb in fish by slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 1999, 14 (10), 1583-1588.
18. Vinas, P.; Pardo-Martinez, M.; Hernandez-Cordoba, M., Rapid determination of selenium, lead and cadmium in baby food samples using electrothermal atomic absorption spectrometry and slurry atomization. Anal. Chim. Acta 2000, 412 (1-2), 121-130.
19. Aramendia, M.; Resano, M.; Vanhaecke, F., Determination of toxic trace impurities in titanium dioxide by solid sampling-electrothermal vaporization-inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2009, 24 (1), 41-50.
20. Li, S. Q.; Hu, B.; Jiang, Z. C., Direct determination of trace impurities in niobium pentaoxide solid powder with slurry sampling fluorination assisted electrothermal vaporization inductively coupled plasma mass spectrometry. J. Anal. At. Spectrom. 2004, 19 (3), 387-391.
21. Wang, L.; Hu, B.; Li, S. Q.; Jiang, Z. C., In-situ electrothermal fluorination-assisted matrix removal, slurry sampling, graphite furnace atomic absorption spectrometry for the determination of trace-level chromium, cobalt and vanadium in zirconium dioxide powder. J. Anal. At. Spectrom. 2001, 16 (8), 847-851.
22. Vinas, P.; Pardo-Martinez, M.; Hernandez-Cordoba, M., Rapid determination of selenium, lead and cadmium in baby food samples using electrothermal atomic absorption spectrometry and slurry atomization. Anal. Chim. Acta 2000, 412 (1-2), 121-130.
23. Kataoka, H.; Okamoto, Y.; Tsukahara, S.; Fujiwara, T.; Ito, K., Separate vaporisation of boric acid and inorganic boron from tungsten sample cuvette-tungsten boat furnace followed by the detection of boron species by inductively coupled plasma mass spectrometry and atomic emission spectrometry (ICP-MS and ICP-AES). Anal. Chim. Acta 2008, 610 (2), 179-185.
24. Coedo, A. G.; Dorado, T.; Padilla, I.; Maibusch, R.; Kuss, H. M., Slurry sampling electrothermal vaporization inductively coupled plasma mass spectrometry for steelmaking flue dust analysis. Spectrochim. Acta B 2000, 55 (2), 185-196.
25. J. Emsley, “分子博覽會”, 商周出版, 2000 年5 月
26. 行政院衛生署食品資訊網http://food.doh.gov.tw/foodnew
27. http://www.healthliving.com/env/benv05.htm
28. http://en.wikipedia.org/wiki/Main_Page
29. Liang, P.; Yang, L. H.; Hu, B.; Jiang, Z. C., ICP-AES detection of ultratrace aluminum(III) and chromium(III) ions with a microcolumn preconcentration system using dynamically immobilized 8-hydroxyquinoline on TiO2 nanoparticles. Anal. Sci. 2003, 19 (8), 1167-1171.
30. Li, L.; Hu, B.; Xia, L. B.; Jiang, Z. C., Determination of trace Cd and Pb in environmental and biological samples by ETV-ICP-MS after single-drop microextraction. Talanta 2006, 70 (2), 468-473.
31. Pena-Vazquez, E.; Villanueva-Alonso, J.; Bermejo-Barrera, P., Optimization of a vapour generation method for metal determination using ICP-OES. J. Anal. At. Spectrom. 2007, 22 (6), 642-649.
32. Xia, L. B.; Hu, B.; Jiang, Z. C.; Wu, Y. L.; Li, L.; Chen, R., 8-Hydroxyquinoline-chloroform single drop microextraction andelectrothermal vaporization ICP-MS for the fractionation of aluminium in natural waters and drinks. J. Anal. At. Spectrom. 2005, 20 (5), 441-446.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內外都一年後公開 withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code