Responsive image
博碩士論文 etd-0804110-231759 詳細資訊
Title page for etd-0804110-231759
論文名稱
Title
以半導體量子點製作高速電致吸收調變器
High-Speed Semiconductor Quantum Dot Electroabsorption Modulator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
85
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-20
繳交日期
Date of Submission
2010-08-04
關鍵字
Keywords
量子點、激子效應、電致吸收調變器
exciton effect, electroabsorption modulator, quantum dot
統計
Statistics
本論文已被瀏覽 5624 次,被下載 0
The thesis/dissertation has been browsed 5624 times, has been downloaded 0 times.
中文摘要
量子點主要是三維侷限的量子結構,如此在狀態密度上是呈現delta-function的函數形式,並且三維侷限的庫倫作用力會使量子侷限史塔克效應增強。因此以三維侷限量子點結構來應用於電致光吸收調變器將會有許多優勢。本論文中將以砷化鎵為基板,利用自聚性長晶法成長一層砷化銦(InAs)量子點之p-i-n異質接面材料,來製作與驗證量子點電致光吸收調變器。
而在元件的製作上主要利用濕蝕刻製程,而其目的是為了得到很平滑的蝕刻表面以降低元件的光損耗,以及檸檬酸液選擇性的蝕刻材料造成主動層底切蝕刻,而達到高速的效果。量測証實元件的電致發光波長約在基態為1280 ~ 1320 nm波段以及激發態為1220 ~ 1240 nm波段。而吸收波長在1280 ~ 1320 nm波段,隨著外加逆偏壓的變大,其波長紅位移偏移量與外加逆偏壓呈二次關係,證實為量子局限史塔克效應(Q.C.S.E.)現象,而於7 V偏壓下的紅位移量約20 nm,以及頻寬變大的現象產生。量測波導長度為300 μm之光波導傳輸系數可以得知元件的調變效果在7 V偏壓下約5 dB,相較於量子井結構,量子點的調變吸收量均會比量子井還少兩個數量級,而量子點調變器的調變強度比量子井小約一個數量級,可知量子點材料上,有很強的史塔克效應現象,很適合往後作高效率調變元件用。高速的電光頻率響應上,在3 dB頻寬約3.34 GHz,主要受限於製程上的雜散電容值過大。經過最佳化的量子點結構與元件寄生電容,量子點的電致吸收調變器在電場調變下是有潛力可以達到高速的調變能力。
Abstract
Quantum dot (QD) has been known as three-dimensional quantum confined structure. Thus, a delta-function type of density with three-dimensional coulomb interaction can have strong dependence on field-driven optical absorption, i.e. Quantum Confine Stark Effect (QCSE), leading to lots of advantages for applications of electroabsorption modulator (EAM). In this work, based on a GaAs substrate, a self-assembly InAs quantum dot (QD) based p-i-n heterostructure is applied for fabricating electroabsorption modulator.
The quantum dot electroabsorption modulation is fabricated by wet-etching technique, where the active region is formed by undercut wet-etching technique using selective etching solution (citric acid). In the device characterization, electro luminescence (EL) is first used to examine the optical transition of QD, showing 1280-1320 nm for ground state and 1220-1240 nm for the excite state. Using the photocurrent spectrum measurement, the red shift of 20 nm in photocurrent peaks from 0 V to 7 V is observed. Also, the peaks exhibit a quadratic relation against with bias, confirming QCSE effect of Q.D.. In the optical transmission measurement, 1300 nm light excites on a 300 μm long device, obtaining 5 dB extinction by voltage swing of 7 V. By comparing with quantum well (QW) structure, the modulation efficient is in the same order of magnitude. However, the active region of QD volume is at least two orders less than QW, indicating strong QCSE can be obtained from QD and QD can have potential for high-efficient modulation. High-speed EO response with -3 dB bandwidth of 3.34 GHz is also obtained, where the main speed limitation is on the electrical isolation on the n-type GaAs substrate. Through optimizing Q.D. structure and also parasitic capacitance, Q.D. EAM can have a great potential for the application of high-speed optical modulation in optoelectronic fields.
目次 Table of Contents
目錄 1
致謝 3
中文摘要 5
英文摘要 7
第一章 簡介 8
1.1 前言 8
1.2 研究動機 9
1.3 論文架構 14
第二章 量子點的高調變及高速機制 15
2.1 量子局限史塔克效應 15
2.2 吸收係數 18
2.3 載子跳脫機制 27
第三章 元件製程 33
3.1 製程元件設計與光模態模擬 33
3.2 量子點材料結構 34
3.3 製程步驟 37
3.4 製程結論 56
第四章 量測結果 59
4.1 金屬接觸電阻 59
4.2 電激發光 64
4.3 吸收頻譜 66
4.4 光波導傳輸系數 68
4.5 自發輻射發光 72
4.6 電-光頻率響應 74
4.7 相關製程討論 77
第五章 結論 79
參考文獻 80
參考文獻 References
[1] Miller D.A.B, D. S. Chemla, and T. C. Damen, “ Electric field dependence of optical absorption near the band gap of quantum-well structures,” Physical Review B, v32, 2, 1043, 1985
[2] Bernhard Stegmueller, Member, IEEE, Elmar Baur, and Max Kicherer, Student Member, IEEE, “ 15-GHz Modulation Performance of Integrated DFB Laser Diode EA Modulator With Identical Multiple-Quantum-Well Double-Stack Active Layer,”IEEE Photon. Technol. Lett., vol. 14, pp 1647-1649, Dec 2002
[3] G. W. Wen, J. Y. Lin, and H. X. Jiang, “ Quantum-Confined Stark Effects in Semiconductor Quantum dots,” PHYSICAL REVIEW B, v52, 8, 1995
[4] Li SS, Xia JB, “ Quantum-confined Stark effects of InAs/GaAs self-assembled Quantum dot,” J. Applied Physics, v88, 12, 7171,2000
[5] Y. Arakawa and H. Sakaki, “ Multidimensional quantum well Laser and temperature dependence of its threshold current,”Appl. Phys. Lett., 40, 939 1982
[6] J. Y. Marzin, J. M. Gerard, A. Izrael,D. Barrier, and G. Bastard,“ Photoluminescence of Single InAs Quantum Dots Obtain by Self-Organized Growth on GaAs,” Phys. Rev. Lett. 73, 716 1994
[7] S. Jaziri, “ EFFECTS OF ELECTRIC AND MAGNETIC FIELDS ON EXCITONS IN QUANTUM DOTS,” Solid State Communications, Vol. 91, No. 2, pp. 171-175, 1994
[8] MASAHIRO ASADA, YASUYUKI MIYAMOTO, AND
YASUHARU SUEMATSU, “ Gain and the Threshold of
Three-Dimensional Quantum-Box Lasers,” IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. QE-22, NO. 9, SEPTEMBER 1986
[9] Mitsuru Sugaeara, Tsuyoshi Yamamoto, Hiroji Ebe,
“Quantum-Dot-Based Photonic Devuces,” FUJITSU Sci. Tech. J., 43, p.495, 2007
[10] D. A. B. Miller, D. s. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus “ Band-Edge Electroabsorption in Quantum Well Structure: The Quantum-Confined Stark Effect” Phys. Rev. Lett. 53, 2173 1984
[11] D. A. B. Miller, D. s. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus “ Electric field dependence of optical absorption near the bank gap of quantum-well
structures” Phys. Rev., vol. B32, pp. 1043-1060, 1985
[12] W. Franz, Z. Naturforsch., vol. 13, pp. 484, 1958
[13] L. V. Keldysh, Zh. Eksp. Sov. Phys., vol. JETP7, pp. 788, 1953
[14] C. Y. Ngo, S. F. Yoon, W. K. Loke, Q. Cao, D. R. Lim, “1.3μm Electroabsorption Modulator with InAs/InGaAs/GaAs Quantum Dots,”OSA/CLEO/IQEC, 2009
[15] D. B. Malins, A.Gomez-Iglesias, S. J. White, W. Sibbett, and A. Miller, “ Ultrafast electroabsorption dynamics in an InAs quantum dot saturable absorber at 1.3 μm,” APPLIED PHYSICS LETTERS 89, 171111 2006
[16] G. Bastard, E. E. Mendez, L. L. Chang, and L. Esaki,“ Variational calculations on a quantum well in an electric field,”Phys. Rev. B, Condens. Matter, vol. 28, pp. 3241-3245, 1983
[17] Susa N, “ Quantum-Confined Stark Effects in Semiconductor Quantum Disks,” IEEE J. Quantum Electronics, v32,10,1760, 1996
[18] M. Suzuki, H. Tanaka, and S. Akiba, “ Effect of hole pile-up at heterointerface on modulation voltage in GaInAsP electroabsorption modulators,” Electron. Lett., vol. 24, pp. 1272-3, 1988
[19] A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunningham, and W. Y. Jan, “ Quantum well carrier sweep out: relation to electroabsorption and exciton saturation saturation,” IEEE J. Quantum Electron., vol. 27, pp. 2281-95, 1991
[20] T. H. Wood, J. Z. Pastalan, Cl. A. Burrus, Jr., B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, and M. G. Young, “ Electric field screening by photogenerated holes in multiple quantum
wells: A. new mechanism for absorption saturation,” Appl. Phys. Lett., vol. 57, pp. 1081-1083, 1990
[21] F. Devaux, S. Chelles, A. Ougazzaden, A. Mircea, J. C. Harmand, “ Electroabsorption modulators for high-bit-rate optical communications: a comparison of strained InGaAs/InAlAs and InGaAsP/InGaAsP MQw,” Semicond. Sci. Technol, vol. 10, pp. 887-901, 1995
[22] Fox A M, Miller D A B, Livescu G, Cunnigham J E, and Yan W Y 1991 Quantum well carrier sweep out: relation to electroabsorption and exciton saturation IEEE J. Quantum Electron. 27 2281
[23] F. Devaux, J.C. Harmand, I.F.L. Dias, T. Guettler, O. Krebs and P. Voisin, “ High power saturation, polarization insensitive electroabsorption modulator with spiked shallow wells”Electronics Letters, vol. 33, pp. 161-163, 1997
[24] Shun Lien Chuang, “Physics of Optoelectronic Device”Professor of Electrical and Computer Engineering University of Illinois at Urbana-Champaign
[25] 研究生:林方正;指導教授:邱逸仁 博士 “橫向錐形內縮式主動波導光模轉換器與高速電致光吸收調變器之整合” 國立中山大學光電工程學系博士論文
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 13.59.82.167
論文開放下載的時間是 校外不公開

Your IP address is 13.59.82.167
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code