Responsive image
博碩士論文 etd-0804111-134130 詳細資訊
Title page for etd-0804111-134130
論文名稱
Title
長基線定位系統與載具動態模式之整合研究
Integration of Long Baseline Positioning System And Vehicle Dynamic Model
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
136
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-26
繳交日期
Date of Submission
2011-08-04
關鍵字
Keywords
參數鑑別、水下無人載具、卡曼濾波、動力模式、長基線
Parameter identification, Underwater vehicle, Kalman filter, Dynamic model, Long baseline
統計
Statistics
本論文已被瀏覽 5658 次,被下載 473
The thesis/dissertation has been browsed 5658 times, has been downloaded 473 times.
中文摘要
精確定位是影響水下載具導航的關鍵因素,雖然當前已經發展許多水下定位儀器與方法,但只有極少數的單一系統能夠提供水下載具可靠的三維座標。長基線定位系統雖然可以量測水下載具三維絕對座標,但卻也存在資料更新緩慢的問題,必須整合其他感測資料,才能提昇長基線系統定位水下載具的精度與可靠度。本研究透過數值模擬與實海域量測實驗,探討長基線詢答時間(Interrogate rate)對水下載具定位精度的影響。由數值模擬與實驗分析結果可知,拉長詢答時間會降低定位精度,此外,無法連續收到應答器的詢答回訊則是長基線定位的另一個主要誤差來源。實驗結果也證實,整合長基線系統與速度資訊來估算收發器位置,可大幅降低水下載具定位誤差。因此,本研究透過卡曼濾波運算整合長基線系統與載具運動方程式,以提高水下載具定位精度。為了進行長基線定位與載具動態模式之整合研究,本研究開發一台水下載具以及簡易人機介面,便於操控載具進行水下定位實驗。為了精確模擬載具運動,本研究進行非耦合運動量測實驗,以鑑別載具動力參數。最後,本研究利用拖航水槽進行定位實驗,控制載具以S形軌跡行進,同時收集長基線定位資料、推進器命令、以及深度資料,並透過卡曼濾波運算融合長基線斜距、載具動力模式之速度資訊、以及深度資訊。實驗結果顯示,利用卡曼濾波整合載具動態模式確實可以改善長基線定位誤差,有效提升水下載具定位精度。
Abstract
Precise positioning is crucial for the success of navigation of underwater vehicles. At present, different instruments and methods are available for underwater positioning but few of them are reliable for three-dimensional position sensing of underwater vehicles. Long baseline (LBL) positioning is the standard method for three-dimensional underwater navigation. However, the accuracy of LBL positioning suffers from its own drawback of relatively low update rates. To improve the accuracy in positioning an underwater vehicle, integration of additional sensing measurements in a LBL navigation system is necessary. In this study, numerical simulation and experiment are conducted to investigate the effect of interrogate rate on the accuracy of LBL positioning. Numerical and experimental results show that the longer the interrogate rate, the greater the LBL positioning error. In addition, no reply from a transponder to transceiver interrogation is another major error source in LBL positioning. The experimental result also shows that the accuracy of LBL positioning can be significantly improved by the integration of velocity sensing. Therefore, based on Kalman filter, this study integrates a LBL system with vehicle dynamic model to improve the accuracy of positioning an underwater vehicle. For conducting the positioning experiments, a remotely operated vehicle (ROV) with dedicated Graphic User Interface (GUI) is designed, constructed, and tested. To have a precise motion simulation of ROV, a nonlinear dynamic model of ROV with six degrees of freedom (DOF) is used and its hydrodynamic parameters are identified. Finally, the positioning experiment is run by maneuvering the ROV to move along an “S” trajectory, and Kalman filter is adopted to propagate the error covariance, to update the measurement errors, and to correct the state equation when the measurements of range, depth, and thruster command are available. The experimental result demonstrates the effectiveness of the integrated LBL system with the ROV dynamic model on the improvement of accuracy of positioning an underwater vehicle.
目次 Table of Contents
第一章 緒論 1
1.1 研究動機與目的..........................................................1
1.2 文獻回顧......................................................................2
1.3 論文架構......................................................................4
第二章 研究方法 5
2.1 長基線定位原理..........................................................5
2.2 應答器定位估算..........................................................8
2.3 載具運動方程式..........................................................9
2.3.1 座標系統定義.......................................................9
2.3.2 運動方程式........................................................12
2.4 卡曼濾波運算............................................................17
2.4.1 離散卡曼濾波.....................................................17
2.4.2 擴展式卡曼濾波.................................................20
第三章 長基線定位精度探討 23
3.1 數值模擬....................................................................24
3.2 實海域實驗................................................................26
3.3 長基線定位資料分析................................................34
3.4 定位誤差改善............................................................43
第四章 水下載具開發 48
4.1 系統元件與感測器.....................................................48
4.2 系統架構....................................................................54
4.3 硬體設計....................................................................58
4.4 人機介面....................................................................64
第五章 載具動力參數鑑別 67
5.1 推力配置....................................................................67
5.2 非耦合運動順序........................................................70
5.2.1 起伏運動.............................................................70
5.2.2 縱移運動.............................................................71
5.2.3 平擺運動.............................................................72
5.2.4 橫搖運動.............................................................73
5.2.5 縱搖運動.............................................................74
5.2.6 縱移平擺運動.....................................................75
5.2.7 載具運動順序.....................................................76
5.3 載具動力參數鑑別....................................................77
5.3.1 起伏運動.............................................................80
5.3.2 橫搖運動.............................................................85
5.3.3 縱搖運動.............................................................87
5.3.4 平擺運動.............................................................89
5.3.5 縱移運動.............................................................94
5.3.6 縱移平擺運動.....................................................97
5.3.7 鑑別結果...........................................................102
第六章 長基線定位與載具動力模式整合 103
6.1 實驗規劃..................................................................103
6.2 長基線定位..............................................................107
6.3 卡曼濾波運算整合長基線定位與載具動態模式..109
第七章 結論與建議 114
7.1 結論..........................................................................114
7.2 建議..........................................................................116
參考文獻 References
[1] H.H.Chen and C.C.Wang,(2007) "Optimal Localization of a Seafloor Transponder in Shallow Water Using Acoustic Ranging and GPS Observations." Ocean Engineering , Vol.34,Nos.17-18, pp. 2385-2399,2007.
[2] C. K. Chui and G. Chen,“Kalman Filtering”, Springer, 1991。
[3] T. I. Fossen, Guidance and Control of Ocean Vehicles, John Wiley and Sons, Chichester, 1994.
[4] Fang, M.C., Hou, C.S., Luo, J.H., “On the motions of the underwater remotely operated vehicle with the umbilical cable effect”, Ocean Engineering, Vol. 34, pp. 1275-1289, 2007.
[5] Gadre, A.S., Stilwell, D.J., 2005, “Underwater Navigation In the Presence of Unknown Currents Based On Range Measurements From a Single Location,”2005 American Control Conference, June 8-10, 2005, Portland, OR, USA, PP. 656-661.
[6]Kussat, N. H., Chadwell, C. D., Zimmerman, R., (2005) "Absolute Positioning of an Autonomous Underwater Vehicle Using GPS and Acoustic Measurements".IEEE Journal of Oceanic Engineering, Vol. 30, No. 1, pp.153-164.
[7] Kalman, R. E. (1960). "A New Approach to Linear Filter and Prediction Problems," Transaction of the ASME-Journal of Basic Engineering, pp. 35-45.
[8]G. Bishop and G. Welch, “An Introduction to the Kalman Filter,” in SIGGRAPH 2001, Course 8, 2001.
[9] E.W.Kamen and J.K.Su,“Introduction to Optimal Estimation”, Springer ,1999。
[10] Maria Isabel Ribeiro. “Kalman and extended kalman filters: Concept, derivation and properties”, Technical report, Institute for Systems and Robotics, 2004.
[11]Obana, K., Katao, H., Ando, M., (2000). "Seafloor positioning system with GPS-acoustic link for crustal dynamics observation—a preliminary result from experiments in the sea". Earth Planets Space 52, 415–423.
[12]D. A. Smallwood and L. L. Whitcomb, "Preliminary Identification of Dynamical Plant Model for the Jason 2 Underwater Robotic Vehicle". Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems,} Maui, Hawaii, USA, 22-26 Sept. 2003, Vol.2, pp. 688- 695, Sept. 2003.
[13]D. A. Smallwood and L. L. Whitcomb, "Adaptive Identification of Dynamically Positioned Underwater Robotic Vehicles", IEEE Transactions On Constrol Systems Technology, Vol. 11, pp. 505-515, July 2003.
[14]Whitcomb, L.L., Yoerger, D.R., Singh, H., 1999, Combined Doppler/LBL Based Navigation of Underwater
Vehicles,”11th International Symposium on Unmanned Untethered Submersible Technology (UUST99), August 22-25, 1999, New England Center, Durham, New Hampshir, USA.
[15]L. L. Whitcomb, D. R. Yoerger, H. Singh, and D. A. Mindell, “Towards Precision Robotic Maneuvering, Survey, and Manipulation in Unstructured Undersea Environments,” in Robotics Research - The Eighth International Symposium}, Y. S. a. S. Hirose, Ed. London: Springer-Verlag, 1998, pp. 45-54.
[16] J. C. Kinsey and L. L. Whitcomb. “Preliminary field experience with the DVLNAV integrated navigation system for oceanographic submersibles. Control Engineering Practice,”12(12):1541–1548, December 2004. Invited Paper.
[17]K. A. Redmill, T. Kitajima, and U. Ozguner, “DGPS/INS integrated positioning for control of automated vehicles”, in Proc. 2001 ZEEE Conference on Intelligent ransportation Systems, 25-29 Aug 2001, pp. 172-178.
[18]高鈞祥,水下推進器之直流馬達驅動與性能量測,國立中山大學碩士論文,2011。
[19]侯章祥,臍帶電纜及洋流對潛航器運動之影響,國立成功大學系統暨船舶機電工程研究所碩士論文,2005。
[20] 張旭輝,以非耦合動態模式與投影映射法進行ROV參數鑑別,國立中山大學碩士論文,2006。
[21]張家溥,利用GPS與聲學量測進行海床應答器之定位,國立中山大學碩士論文,2009。
[22] 張文莉,水下載具泛用控制器架構之研發,國立中山大學碩士論文,2010。

電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code