Responsive image
博碩士論文 etd-0804111-155735 詳細資訊
Title page for etd-0804111-155735
論文名稱
Title
利用化學汽相沉積法生長(0002)氧化鋅薄膜 在LiGaO2 (001)基板上
Growth of (0002) ZnO Films on LiGaO2 (001) substrate by chemical vapor deposition method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-18
繳交日期
Date of Submission
2011-08-04
關鍵字
Keywords
(0002)面、極性、化學汽相沉積法、氧化鋅、鎵酸鋰
(0002)plane, LiGaO2, ZnO, CVD, polar
統計
Statistics
本論文已被瀏覽 5674 次,被下載 542
The thesis/dissertation has been browsed 5674 times, has been downloaded 542 times.
中文摘要
本論文研究以化學汽相沉積法(Chemical Vapor Deposition, CVD) 成長(0002)氧化鋅(Zinc Oxide, ZnO)磊晶薄膜於LiGaO2(001)基板上。採用Zinc 2,4-pentanedionate monohydrate [Zn(C5H7O2)2.H2O] 作為鋅的前驅物(precursor),氧來源則是採用高純度氧氣,並以氮氣做為載氣(carrier gas),探討成長溫度,成長壓力和成長時間對(0002) ZnO薄膜成長之影響。
CVD成長後之試片使用X光繞射儀(X-Ray Diffraction, XRD)、掃描式電子顯微鏡(Scanning Electron Microscopy, SEM)、光激發光譜(Photoluminescence spectroscopy, PL)、原子力顯微鏡(Atomic Force Microscope. AFM)和穿透式電子顯微鏡(Transmission electron microscopy, TEM)來分析其結晶方向、結晶品質、表面形貌、光學性質、表面粗糙度和微結構的情況,觀察ZnO薄膜之成長情形。
本論文主要分為三部分。第一部分探討相同成長壓力,不同成長溫度對(0002)ZnO表面形貌與晶體品質之影響,發現於成長溫度550℃下成長的ZnO薄膜具有較佳的表面形貌與晶體品質。第二部分則是固定成長溫度550℃,改變成長壓力以尋找最適合(0002) ZnO薄膜成長之條件,結果顯示低壓50 torr具有較佳的結晶性質。第三部分固定成長溫度550℃與成長壓力50 torr,改變成長時間以探討其對(0002) ZnO薄膜成長之影響。
Abstract
In the thesis, epitaxial ZnO films were grown by chemical vapor deposition method (CVD) on LiGaO2 (001) substrate. Zinc 2,4-pentanedionate monohydrate [Zn (C5H7O2) 2. H2O] , used as the zinc precursor, was vaporized at the temperature between 130 to 140℃. Then the vapor was carried by a mixture of N2/O2 gas flow into the furnace where the (001) LGO substrate located. The parameters of growth temperature, growth pressure and growth time were adjusted to found the best ZnO films growth conditions.
After CVD growth, the crystal structure, crystal quality, surface morphology, optical properties, surface roughness and micro-structure properties of the specimens were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), photoluminescence (PL), atomic force microscopy (AFM) and transmission electron microscopy (TEM).
This study was divided into three parts. In the first parts, the dependence of growth characteristics on the different growth temperatures was investigated. The best surface morphology and crystal quality of ZnO films were grown under the growth temperature of 550 ℃. In the second parts, the growth of ZnO films under various pressures was investigated. High orientation (0002)ZnO films were grown at lower growth pressure of 50 torr. In the third parts, the dependence of growth time on the ZnO films quality was investigated under growth temperature of 550 ℃and growth pressure of 50 torr.
目次 Table of Contents
摘要 ..................................................................................................................... III
Abstract ................................................................................................................ V
目錄 .................................................................................................................... VI
圖目錄 ................................................................................................................ IX
表目錄 ................................................................................................................ XI
第一章 緒論 ......................................................................................................... 1
1-1 前言 ........................................................................................................ 1
1-2 研究動機 ................................................................................................ 2
第二章 文獻回顧與理論基礎 ............................................................................. 4
2-1 氧化鋅材料(ZnO) .................................................................................. 4
2-2 氧化鋅發光性質 .................................................................................... 5
2-3 基板-LiGaO2(LGO)材料特性 ................................................................ 5
2-4 化學汽相沉積法 .................................................................................. 10
第三章 實驗方法及步驟 ................................................................................... 13
3-1 實驗流程 .............................................................................................. 13
3-2 CVD生長裝置 ...................................................................................... 13
3-3實驗方法與步驟 ................................................................................... 15
3-3-1 基板清洗 .......................................................................................... 15
3-3-2 CVD成長.......................................................................................... 15
3-4 實驗成長參數 ............................................................................................ 16
3-4-1 成長溫度對LGO(001)基板上磊晶ZnO薄膜的影響 ............. 17
3-4-2 成長壓力對LGO(001)基板上磊晶ZnO薄膜的影響 ............. 17
3-4-3 成長時間對LGO(001)基板上磊晶ZnO薄膜的影響 ............. 18
3-5 量測設備簡介 ............................................................................................ 19
3-5-1 X光繞射分析儀(X-ray diffraction, XRD) ...................................... 19
3-5-2 電子顯微鏡(Electron Microscope, EM) ........................................ 19
3-5-3 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) ........... 20
3-5-4 穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) .... 20
3-5-5光激發光譜(Photoluminescence spectroscopy, PL) ...................... 21
3-5-6原子力顯微鏡(atomic force microscope,AFM) ........................... 22
第四章 實驗結果與討論 ................................................................................... 23
4-1成長溫度對LGO(001)基板上磊晶ZnO薄膜的影響 ..................... 23
4-1-1 X光繞射(XRD)分析 ................................................................... 23
4-1-2 SEM 薄膜表面形貌分析 .................................................................. 28
4-2成長壓力對LGO(001)基板上磊晶ZnO薄膜的影響 ..................... 31
4-2-1 X光繞射(XRD)分析 ................................................................... 32
4-2-2 SEM 薄膜表面形貌分析 .................................................................. 35
4-3成長時間對LGO(001)基板上磊晶ZnO薄膜的影響 ..................... 38
4-3-1 X光繞射(XRD)分析 ................................................................... 38
4-3-2 SEM 薄膜表面形貌分析 .................................................................. 41
4-4光激發光譜儀(Photolumininescence,PL)發光性質分析 .................... 43
4-5 AFM表面形貌分析 ................................................................................. 45
4-6 穿透式電子顯微鏡分析 .......................................................................... 46
第五章結論 ......................................................................................................... 49
參考文獻 ............................................................................................................. 51
圖目錄
圖2-1氧化鋅結構示意圖 ................................................................................... 4
圖2-2 LGO unit cell ............................................................................................. 6
圖2-3 pulsed-laser deposit沉積(0002)ZnO在LGO基板上之PL圖譜 .......... 8
圖2-4 pulsed-laser deposit沉積(0002)ZnO在LGO基板上之AFM圖譜 ...... 8
圖2-5 CVD法沉積ZnO 於(100)LGO基板上之X-ray Rocking curve圖譜 . 9
圖2-6 CVD法沉積ZnO 於(100)LGO基板上之θ-2θ掃描X-ray繞射圖 ... 10
圖2-7 CVD 反應步驟示意圖 ........................................................................... 12
圖3-1 CVD系統示意圖 .................................................................................... 14
圖3-2 實驗溫度變化曲線 ................................................................................ 16
圖4-1 成長溫度分別為(a) 510℃,(b) 550℃,(c) 610℃,(d) 680℃及(e) 710℃下,於(001) LGO基板上成長ZnO薄膜之θ-2θ掃描X-ray繞射圖 ........... 26
圖4-2 成長溫度分別為(a) 510℃,(b) 550℃,(c) 610℃,(d) 680℃及(e) 710℃下,於(001) LGO基板上成長ZnO薄膜之X-ray rocking curve繞射圖 ..... 26
圖4-3 成長溫度分別為(a) 510℃,(b) 550℃,(c) 610℃,(d) 680℃及(e) 710℃下,於(001) LGO基板上成長ZnO薄膜之二次電子影像圖 ........................ 31
圖4-4成長壓力分別為(a) 50 torr、(b) 150 torr、 (c) 200 torr及(d) 400 torr下,於(001) LGO基板上成長ZnO薄膜之θ-2θ掃描X-ray繞射圖 ........... 33
圖4-5 成長壓力分別為(a) 50 torr、(b) 150 torr、 (c) 200 torr、(d) 400 torr下,於(001) LGO基板上成長ZnO薄膜之X-ray Rocking curve圖 ............ 34
圖4-6 成長壓力分別為(a) 50 torr、(b) 150 torr、(c) 200 torr及(d) 400 torr下,於(001) LGO基板上成長ZnO薄膜之二次電子影像圖 ................................ 37
圖4-7 成長時間分別為(a) 3600秒、(b) 5400秒和 (c) 7200秒條件下,於(001) LGO基板上成長ZnO薄膜之θ-2θ掃描X-ray繞射圖 ................................. 40
圖4-8 成長時間分別為(a) 3600秒、(b) 5400秒及(c) 7200秒下,於(001) LGO基板上成長ZnO薄膜之X-ray rocking curve繞射圖 ..................................... 40
圖4-9 成長時間分別為(a) 3600秒、(b) 5400秒和(c) 7200秒下,於(001) LGO基板上成長ZnO薄膜之二次電子影像圖 ....................................................... 42
圖4-10 T01、T02、T03、T04詴片生長ZnO之PL發光圖譜 .................... 44
圖4-11 T05詴片之 AFM-2D及AFM-3D影像圖 ......................................... 45
圖4-12 T02詴片之AFM-2D及AFM-3D影像圖 .......................................... 45
圖4-13 (a)為T03詴片生長之明場影像(b) LGO基板選區繞射圖(c) ZnO薄膜選區繞射圖 ......................................................................................................... 47
圖4-14 T03詴片之HRTEM影像 .................................................................... 48
表目錄
表2-1 LGO 熱膨脹係數表 ................................................................................. 6
表2-2 ZnO (0002)與LGO (001) 之晶格失配度 ............................................... 7
表3-1以生長溫度為變異參數表(200 torr) ...................................................... 17
表3-2改變壓力為變異參數表(550℃) ............................................................ 18
表3-3以生長時間為變異參數表(50 torr) ........................................................ 19
表4-1各晶面對應之繞射峰位置 ..................................................................... 23
參考文獻 References
參考文獻

[1] A. Tsukazaki, A. Ohtomo, T. Ohnuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nat. Mater. 4 (2005) 42.
[2] P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103 (1997) 459.
[3] X. M. Fan, J. S. Lian, L. Zhao, and Y. H. Liu, Appl. Sur. Sci. , 15 (2005) 420.
[4] K. Tanaka, N.Kotera, and H. Nakamura, Electronics Letters, 34 (1998) 21.
[5] H. S. Kim, E. S. Jung, W. J. Lee, J. H. Kim, S. O. Ryu, S. Y. Choi, Ceramics International, 34 (2008) 1097.
[6] Z. Zhang, J. Huang, H. He, S. Lin, H. Tang, and H. Lu, Z. Ye, Solid-State Electronics, 53 (2009) 578.
[7] A. Ohtomo, M. Kawasaki, T. Koida, K. Masubuchi, H. Koinuma, Y. Sakurai Y. Yoshida T. Yasuda, and Y. Segawa, Appl. Phys. Lett. 72 (1998) 2466.
[8] T. Makino, Y. Segawa, M. Kawasaki, A. Ohtomo, R. Shiroki, K. Tamura, T. Yasuda, and H. Koinuma, Appl. Phys. Lett. 78 (2001) 1237.
[9] M. W. Ahn, K. S. Park, J. H. Heo, D. W. Kim, K. J. Choi, and J. G. Park, Sens. Actuators B: Chem. , 138 (2009) 168.
[10] I. Akasaki, H. Amano, Y. Koide, K. Hiramatsu, and N. Sawaki, J. Cryst. Growth, 98 (1989) 209.
[11] J. S. Park, S. K. Hong, and T. Minegishi, Appl. Sur. Sci, 254 (2008) 7786.

[12] P. Fons, K. Iwata, A. Yamada, K. Matsubara, S. Niki, K. Nakahara, T. Tanabe and H. Takasu, Appl. Phys. Lett. 77 (2000) 1801.
[13] B. Wang, M. J. Callahan, C. Xu, L. O. Bouthillette, N. C. Giles, and D.F. Bliss, J. Cryst. Growth, 304 (2007) 73.
[14] J. Zhao, L. Hu, Z. Wang, Z. Wang, H. Zhang, Y. Zhao, and X. Liang, J. Cryst. Growth, 280 (2005) 455.
[15] M. M. C. Chou, L. Chang, H. Y. Chung, T. H. Huang, J. J. Wu, and C. W. Chen, J. Cryst. Growth, 308 (2007) 412.
[16] S. Liu, S. Zhou, Y. Wang, and X. Zhang, J. Cryst. Growth, 292 (2006) 125.
[17] T. Makino, K. Tamura, C. H. Chia, Y. Segawa, M. Kawasaki, A. Ohtomo, and H. Koinuma , J. Appl. Phys. , 92 (2002) 7157.
[18] M. J. Ying, X. L. Du, Y. Z. Liu, Z. T. Zhou, Z. Q. Zeng, Z. X. Mei, J. F. Jia, H. Chen, and Q. K. Xue, Appl. Phys. Lett., 87 (2005) 202107.
[19] T. Huang, S. Zhou, H. Teng, H. Lin, J. Wang, P. Han, R. Zhang, J. Cryst. Growth 310 (2008) 3144.
[20] Pearson’s Handbook of Crystallographic Data, ASM international, (1997) 4795.
[21] H. Karzel, Phys. Rev. B, 53 (1996) 11425.
[22] D. P. Norton, Y. W. Heo, M. P. Ivill, S. J. Pearton, M. F. Chisholm, and T. Steiner, Materials, 7 (2004) 34.
[23] K.P. Bhuvana, J. Elanchezhiyan, N. Gopalakrishnan, and B. C. Shin, J. Alloys Compd.., 478 (2009) 54.
[24] S. K. Hazra, S. Basu, Sens. Actuators B: Chem. , 117 ( 2006) 177.
[25] M. Marezio, Acta Crystallogr. 18 (1965) 481.
[26] J. P. Remeika, A. A. Ballman, Appl. Phys. Lett., 5 (1964) 180.
[27] T. Ishii, Y. Tazoh, S. Miyazawa, J. Cryst. Growth, 189 (1998) 208.
[28] S. Nanamatsu, K. Doi, and M. Takahashi, Jpn. J. Appl. Phys. 11(1972) 816.
[29] S. Liu, S. Zhou, Y. Wang, X. Zhang, X. Li,C. Xia, Y. Hang, J. Xu, J. Cryst. Growth, 292 (2006) 125.
[30] 黃鐙興,“磊晶於鋁酸鋰基板的氧化鋅薄膜成長機構研究與缺陷分析”,國立中山大學材料科學研究所碩士論文 (2008)。
[31] 陳正桓,“以自遮罩法成長氧化鋅磊晶”,國立中山大學材料科學研究所碩士論文 (2009)。
[32] 廖彥翔,“利用化學氣相沉積法生長非極性之氧化鋅薄膜在LiGaO2基板上”,國立中山大學材料科學研究所碩士論文 (2010)。
[33] 余俊毅,“非極性氧化鋅磊晶在鎵酸鋰基板之成長機構研究”,國立中山大學材料科學研究所碩士論文 (2010)。
[34] H. O. Pierson, “Handbook of Chemical Vapor Deposition”, Second Edition, Noyes Publications U. S. A, (1999)12.
[35] C. E. Morosanu, “Thin Films by Chemical Vapor Deposition”, Elsevier, New York, (1990) 102.
[36] B. Wang, M. J. Callahan, C. Xu, L. O. Bouthillette, N. C. Giles, D. F. Bliss J. Cryst. Growth, 304 (2007) 73.
[37] P. Sanguino, O. M. N. D. Teodoro, M. Niehus, C. P. Marques, A. M. C. Moutinho, E. Alves, and R. Schwarz, Sens. Actuators A: Phys. , 121 (2005) 131.
[38] H. Okumura, T. Ishikawa, T. Akane, M. Sano, S. Matsumoto Appl. Sur. Sci, 135 (1998) 121.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code