Responsive image
博碩士論文 etd-0804112-214405 詳細資訊
Title page for etd-0804112-214405
論文名稱
Title
探討肝癌衍生生長因子誘發細胞移行的機轉及在上皮-間質細胞形變的角色
Investigation on the Mechanisms of Hepatoma-Derived Growth Factor-Mediated Cell Migration and Epithelial-Mesenchymal Transition
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
124
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-27
繳交日期
Date of Submission
2012-08-04
關鍵字
Keywords
肝癌衍生生長因子、磷酸肌醇3-激酶、蛋白激酶B、上皮-間質細胞形變、鈣黏著素E、中間絲蛋白
E-cadherin, PI3K, Vimentin, Akt, Hepatoma-derived growth factor, epithelal-mesenchemal transition
統計
Statistics
本論文已被瀏覽 5675 次,被下載 852
The thesis/dissertation has been browsed 5675 times, has been downloaded 852 times.
中文摘要
本論文主要探討在非轉型的老鼠細胞NIH/3T3模式中,肝癌衍生生長因子(Hepatoma derived growth factor; HDGF)誘發細胞移行的機轉。實驗顯示,纖維母細胞在HDGF刺激下能有效地促進細胞的移行能力及增加細胞骨架重組的現象,也會誘發細胞訊息蛋白質-磷酸肌醇3-激酶(PI3K)的表現,促進同源性磷酸酶-張力蛋白(PTEN)與蛋白激B (Akt) 磷酸化及增加小型G蛋白鳥嘌呤三磷酸酶(Rho GTPases): RhoA, Rac1 及Cdc42的活性。另外,腺病毒攜帶PTEN基因傳送到NIH/3T3-HDGF細胞株後會抑制HDGF所誘發的PI3K/Akt/Rho GTPases訊息路徑。同樣地, PI3K抑制劑-LY294002亦可阻擾HDGF所誘導的細胞移行及細胞骨架的重組及RhoA, Rac1 及Cdc42蛋白質的活化。這些結果證實HDGF乃透過活化PI3K/Akt /Rho GTPases 訊息路徑及細胞骨架重組進而誘發細胞移行的進行。 另外,本論文也發現HDGF在乳癌組織的表現相較正常組織表現量高,且乳癌細胞核內的HDGF labelling index (LI)與腫瘤分化程度,腫瘤分期以及增值指數呈正相關;而與乳癌病人的存活率呈負相關。我們的結果也顯示HDGF過度表現亦與淋巴結轉移(TNM)有相關並可作為對腫瘤復發的預後因子。此外,本論文也探討HDGF如何誘導上皮-間質細胞形變的發生。
實驗發現,癌化程度高的細胞株-MDA-MB-231細胞,其HDGF的表現量高於非轉型的細胞株-MCF-7 細胞。MDA-MB-231細胞在表現細胞侵犯能力及形成細胞群落的能力上優於MCF-7細胞。無論以腺病毒攜帶HDGF基因過量表現或外加HDGF蛋白質皆會刺激細胞的侵犯性與增加細胞群落的形成,也會使得鈣黏著素E (E-cadherin)下降及中間絲蛋白(Vimentin)的增加。相反的,無論shHDGF RNA干擾序列傳送、HDGF抗體中和實驗或BITC處理也發現,抑制MDA-MB-231細胞的HDGF表現會使得細胞的E-cadherin增加而Vimentin下降,因而抑制其侵犯能力與上皮-間質細胞形變的發生。
總結我們以上的研究得知,HDGF可利用活化細胞的PI3K/Akt /Rho GTPases訊息傳遞路徑來刺激細胞骨架的重組,因而改變細胞移行能力。而此結果,也誘發細胞的上皮-間質細胞形變現象發生並促使細胞的侵犯能力提高,因而促使癌細胞的轉移。所以我們研究結果,不僅提供HDGF在誘發細胞移行及轉移的新見解,而且也證實HDGF可作為乳癌預後指標的可行性。

關鍵詞:肝癌衍生生長因子,磷酸肌醇3-激酶,蛋白激酶B,上皮-間質細胞形變,鈣黏著素E, 中間絲蛋白
Abstract
In this study, we investigated the mechanisms of HDGF on cell migration in non-transformed NIH/3T3 cells. HDGF promoted the migration and the formation of dorsal ruffles and podosome rosettes. Besides, HDGF supply increased the PI3K expression, Akt phosphorylation and PTEN phosphorylation as well as stimulated the RhoA, Rac1, and Cdc42 activities. Furthermore, Adenoviral gene transfer of PTEN attenuated migration and PI3K/Akt/Rho GTPases signaling in HDGF-overexpressing transfectants. Pharmaceutical intervention using the PI3K inhibitor, LY294002, potently reversed HDGF-stimulated cell migration, dorsal ruffles formation and podosome formation as well as the RhoA, Rac1, and Cdc42 activities. Thus, HDGF elicits the activation of PI3K/Akt /Rho GTPases signaling cascade and promotes cytoskeleton remodeling to stimulate cellular migration. Moreover, we investigate the expression profile of HDGF during breast carcinogenesis. Immunohistochemical studies revealed elevated HDGF expression in human breast cancer. Nuclear HDGF labelling index was positively correlated with tumour grade, stage and proliferation index, but negatively correlated with survival rate in breast cancer patients. Our data also showed that HDGF over-expression was associated with lymph node metastasis and represented an independent prognostic factor for tumor recurrence. Furthermore, Immunoblot study revealed that elevated HDGF expression significantly higher in breast cancer cells (MDA-MB-231 cells) than that in non-transformed breast cells (MCF-7 cells). Consistently, higher invasive potency and colony formation also observed in MDA-MB-231 cells than in MCF-7 cells. Adenovirus-mediated HDGF over-expression and exogenous HDGF treatment stimulated the invasiveness and colony formation as well as E-cadherin down-regulation and Vimentin up-regulation. Conversely, either HDGF knockdown by RNA interference, HDGF antibody neutralization or BITC-induced EMT suppression in MDA-MB-231 cells attenuated the malignant behavior and elicited EMT reversal by enhancing E-cadherin expression while depleting Vimentin expression.
In summary, HDGF elicits the activation of PI3K/Akt/Rho GTPases signaling cascade, thereby promoting cytoskeleton remodeling to stimulate cellular migration. Moreover, the formation of podosome rosettes is correlated with cell invasion, the podosome-stimulating capability of HDGF is consistent with HDGF regulates the metastasis of breast cancer through modulating of epithelial-mesenchymal transition. Therefore, our results provide not only novel insights into the role of the HDGF in cell migration and tumor metastasis, but also validate a novel prognostic indicator for breast cancer.

Key words: Hepatoma-derived growth factor, PI3K, Akt, epithelal-mesenchemal transition, E-cadherin, Vimentin
目次 Table of Contents
Abstract in Chinese …………………………………… 2
Abstract in English ...………………………………….. 4
Abbreviation …………………………………… 8
Chapter 1 Background
1-1 Introduction ...…………………………………. 9 1-2 Specific Aims …..……………………………… 13
1-3 Figures and Legends …..……………………………… 14
Chapter 2 Delineation of the Mechanism Underlying HDGF Induced Migration in Non-transformed NIH/3T3 cells
2-1 Introduction .…………………………………. 16
2-2 Materials and Methods ……………..……………………. 22
2-3 Results ….…………….………………… 28
2-4 Discussion ....……………………………….. 35
2-5 Figures and Legends ……….……………………….... 39
Chapter 3 Investigation on the Expression Profiles of HDGF in Breast Cancer Progression
3-1 Introduction …………………………………. 56
3-2 Materials and Methods ……………..…………………… 61
3-3 Results .....……………………………… 63
3-4 Discussion ..………………………………… 65
3-5 Tables .…….…………………………… 67
3-6 Figures and Legends .…..…………..………………… 72

Chapter 4 Clarification on the role of HDGF in Epithelial- Mesenchymal transition of breast cancer cells
4-1 Introduction ..………………………………… 76
4-2 Materials and Methods …...……………………………… 81
4-3 Results ….……………………………… 85
4-4 Discussion .………………………………… 89
4-5 Figures and Legends ….……………………………… 92
Chapter 5 Conclusion ………………………………… 108
Reference ..……………………………… 110 Publications and Conferences ………………………………… 122
參考文獻 References
[1] H. Nakamura, Y. Izumoto, H. Kambe, T. Kuroda, T. Mori, K. Kawamura, H. Yamamoto, T. Kishimoto, Molecular cloning of complementary DNA for a novel human hepatoma-derived growth factor. Its homology with high mobility group-1 protein, J Biol Chem 269 (1994) 25143-25149.
[2] M.M. Abouzied, H.M. El-Tahir, L. Prenner, H. Haberlein, V. Gieselmann, S. Franken, Hepatoma-derived growth factor. Significance of amino acid residues 81-100 in cell surface interaction and proliferative activity, J Biol Chem 280 (2005) 10945-10954.
[3] A.D. Everett, T. Stoops, C.A. McNamara, Nuclear targeting is required for hepatoma-derived growth factor-stimulated mitogenesis in vascular smooth muscle cells, J Biol Chem 276 (2001) 37564-37568.
[4] Y. Kishima, H. Yamamoto, Y. Izumoto, K. Yoshida, H. Enomoto, M. Yamamoto, T. Kuroda, H. Ito, K. Yoshizaki, H. Nakamura, Hepatoma-derived growth factor stimulates cell growth after translocation to the nucleus by nuclear localization signals, J Biol Chem 277 (2002) 10315-10322.
[5] A.D. Everett, J. Bushweller, Hepatoma derived growth factor is a nuclear targeted mitogen, Curr Drug Targets 4 (2003) 367-371.
[6] A.D. Everett, J. Yang, M. Rahman, P. Dulloor, D.L. Brautigan, Mitotic phosphorylation activates hepatoma-derived growth factor as a mitogen, BMC Cell Biol 12 (2011) 15.
[7] I. Stec, S.B. Nagl, G.J. van Ommen, J.T. den Dunnen, The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation?, FEBS Lett 473 (2000) 1-5.
[8] S.M. Lukasik, T. Cierpicki, M. Borloz, J. Grembecka, A. Everett, J.H. Bushweller, High resolution structure of the HDGF PWWP domain: a potential DNA binding domain, Protein Sci 15 (2006) 314-323.
[9] Y.Z. Ge, M.T. Pu, H. Gowher, H.P. Wu, J.P. Ding, A. Jeltsch, G.L. Xu, Chromatin targeting of de novo DNA methyltransferases by the PWWP domain, J Biol Chem 279 (2004) 25447-25454.
[10] J. Zhao, H. Yu, L. Lin, J. Tu, L. Cai, Y. Chen, F. Zhong, C. Lin, F. He, P. Yang, Interactome study suggests multiple cellular functions of hepatoma-derived growth factor (HDGF), J Proteomics 75 (2011) 588-602.
[11] C.H. Wang, F. Davamani, S.C. Sue, S.C. Lee, P.L. Wu, F.M. Tang, C. Shih, T.H. Huang, W.G. Wu, Cell surface heparan sulfates mediate internalization of the PWWP/HATH domain of HDGF via macropinocytosis to fine-tune cell signalling processes involved in fibroblast cell migration, Biochem J 433 (2011) 127-138.
[12] Y. Izumoto, T. Kuroda, H. Harada, T. Kishimoto, H. Nakamura, Hepatoma-derived growth factor belongs to a gene family in mice showing significant homology in the amino terminus, Biochem Biophys Res Commun 238 (1997) 26-32.
[13] K. Ikegame, M. Yamamoto, Y. Kishima, H. Enomoto, K. Yoshida, M. Suemura, T. Kishimoto, H. Nakamura, A new member of a hepatoma-derived growth factor gene family can translocate to the nucleus, Biochem Biophys Res Commun 266 (1999) 81-87.
[14] F. Dietz, S. Franken, K. Yoshida, H. Nakamura, J. Kappler, V. Gieselmann, The family of hepatoma-derived growth factor proteins: characterization of a new member HRP-4 and classification of its subfamilies, Biochem J 366 (2002) 491-500.
[15] H. Ge, Y. Si, R.G. Roeder, Isolation of cDNAs encoding novel transcription coactivators p52 and p75 reveals an alternate regulatory mechanism of transcriptional activation, EMBO J 17 (1998) 6723-6729.
[16] H.M. El-Tahir, F. Dietz, R. Dringen, K. Schwabe, K. Strenge, S. Kelm, M.M. Abouzied, V. Gieselmann, S. Franken, Expression of hepatoma-derived growth factor family members in the adult central nervous system, BMC Neurosci 7 (2006) 6.
[17] S.C. Sue, J.Y. Chen, S.C. Lee, W.G. Wu, T.H. Huang, Solution structure and heparin interaction of human hepatoma-derived growth factor, J Mol Biol 343 (2004) 1365-1377.
[18] J.A. Oliver, Q. Al-Awqati, An endothelial growth factor involved in rat renal development, J Clin Invest 102 (1998) 1208-1219.
[19] A.D. Everett, D.R. Lobe, M.E. Matsumura, H. Nakamura, C.A. McNamara, Hepatoma-derived growth factor stimulates smooth muscle cell growth and is expressed in vascular development, J Clin Invest 105 (2000) 567-575.
[20] R.E. Cilley, S.E. Zgleszewski, M.R. Chinoy, Fetal lung development: airway pressure enhances the expression of developmental genes, J Pediatr Surg 35 (2000) 113-118; discussion 119.
[21] A.D. Everett, Identification, cloning, and developmental expression of hepatoma-derived growth factor in the developing rat heart, Dev Dyn 222 (2001) 450-458.
[22] H. Enomoto, K. Yoshida, Y. Kishima, T. Kinoshita, M. Yamamoto, A.D. Everett, A. Miyajima, H. Nakamura, Hepatoma-derived growth factor is highly expressed in developing liver and promotes fetal hepatocyte proliferation, Hepatology 36 (2002) 1519-1527.
[23] M. Lepourcelet, L. Tou, L. Cai, J. Sawada, A.J. Lazar, J.N. Glickman, J.A. Williamson, A.D. Everett, M. Redston, E.A. Fox, Y. Nakatani, R.A. Shivdasani, Insights into developmental mechanisms and cancers in the mammalian intestine derived from serial analysis of gene expression and study of the hepatoma-derived growth factor (HDGF), Development 132 (2005) 415-427.
[24] A.D. Everett, J.V. Narron, T. Stoops, H. Nakamura, A. Tucker, Hepatoma-derived growth factor is a pulmonary endothelial cell-expressed angiogenic factor, Am J Physiol Lung Cell Mol Physiol 286 (2004) L1194-1201.
[25] J. Zhang, H. Ren, P. Yuan, W. Lang, L. Zhang, L. Mao, Down-regulation of hepatoma-derived growth factor inhibits anchorage-independent growth and invasion of non-small cell lung cancer cells, Cancer Res 66 (2006) 18-23.
[26] Y. Okuda, H. Nakamura, K. Yoshida, H. Enomoto, H. Uyama, T. Hirotani, M. Funamoto, H. Ito, A.D. Everett, T. Hada, I. Kawase, Hepatoma-derived growth factor induces tumorigenesis in vivo through both direct angiogenic activity and induction of vascular endothelial growth factor, Cancer Sci 94 (2003) 1034-1041.
[27] T.C. Shih, Y.J. Tien, C.J. Wen, T.S. Yeh, M.C. Yu, C.H. Huang, Y.S. Lee, T.C. Yen, S.Y. Hsieh, MicroRNA-214 downregulation contributes to tumor angiogenesis by inducing secretion of the hepatoma-derived growth factor in human hepatoma, J Hepatol (2012).
[28] C. Thirant, E.M. Galan-Moya, L.G. Dubois, S. Pinte, P. Chafey, C. Broussard, P. Varlet, B. Devaux, F. Soncin, J. Gavard, M.P. Junier, H. Chneiweiss, Differential Proteomic Analysis of Human Glioblastoma and Neural Stem Cells Reveals HDGF as a Novel Angiogenic Secreted Factor, Stem Cells (2012).
[29] K. Yoshida, H. Nakamura, Y. Okuda, H. Enomoto, Y. Kishima, H. Uyama, H. Ito, T. Hirasawa, S. Inagaki, I. Kawase, Expression of hepatoma-derived growth factor in hepatocarcinogenesis, J Gastroenterol Hepatol 18 (2003) 1293-1301.
[30] S. Yamamoto, Y. Tomita, Y. Hoshida, S. Takiguchi, Y. Fujiwara, T. Yasuda, Y. Doki, K. Yoshida, K. Aozasa, H. Nakamura, M. Monden, Expression of hepatoma-derived growth factor is correlated with lymph node metastasis and prognosis of gastric carcinoma, Clin Cancer Res 12 (2006) 117-122.
[31] T.H. Hu, C.C. Huang, L.F. Liu, P.R. Lin, S.Y. Liu, H.W. Chang, C.S. Changchien, C.M. Lee, J.H. Chuang, M.H. Tai, Expression of hepatoma-derived growth factor in hepatocellular carcinoma, Cancer 98 (2003) 1444-1456.
[32] K. Yoshida, Y. Tomita, Y. Okuda, S. Yamamoto, H. Enomoto, H. Uyama, H. Ito, Y. Hoshida, K. Aozasa, H. Nagano, M. Sakon, I. Kawase, M. Monden, H. Nakamura, Hepatoma-derived growth factor is a novel prognostic factor for hepatocellular carcinoma, Ann Surg Oncol 13 (2006) 159-167.
[33] H. Ren, X. Tang, J.J. Lee, L. Feng, A.D. Everett, W.K. Hong, F.R. Khuri, L. Mao, Expression of hepatoma-derived growth factor is a strong prognostic predictor for patients with early-stage non-small-cell lung cancer, J Clin Oncol 22 (2004) 3230-3237.
[34] H. Uyama, Y. Tomita, H. Nakamura, S. Nakamori, B. Zhang, Y. Hoshida, H. Enomoto, Y. Okuda, M. Sakon, K. Aozasa, I. Kawase, N. Hayashi, M. Monden, Hepatoma-derived growth factor is a novel prognostic factor for patients with pancreatic cancer, Clin Cancer Res 12 (2006) 6043-6048.
[35] S. Yamamoto, Y. Tomita, Y. Hoshida, E. Morii, T. Yasuda, Y. Doki, K. Aozasa, H. Uyama, H. Nakamura, M. Monden, Expression level of hepatoma-derived growth factor correlates with tumor recurrence of esophageal carcinoma, Ann Surg Oncol 14 (2007) 2141-2149.
[36] K.C. Chang, M.H. Tai, J.W. Lin, C.C. Wang, C.C. Huang, C.H. Hung, C.H. Chen, S.N. Lu, C.M. Lee, C.S. Changchien, T.H. Hu, Hepatoma-derived growth factor is a novel prognostic factor for gastrointestinal stromal tumors, Int J Cancer 121 (2007) 1059-1065.
[37] T.H. Hu, J.W. Lin, H.H. Chen, L.F. Liu, S.K. Chuah, M.H. Tai, The expression and prognostic role of hepatoma-derived growth factor in colorectal stromal tumors, Dis Colon Rectum 52 (2009) 319-326.
[38] S. Wang, W. Fang, Increased expression of hepatoma-derived growth factor correlates with poor prognosis in human nasopharyngeal carcinoma, Histopathology 58 (2011) 217-224.
[39] Y.F. Liu, R. Zhao, S. Guo, X.Q. Wang, P.L. Lian, Y.G. Chen, K.S. Xu, Expression and clinical significance of hepatoma-derived growth factor as a prognostic factor in human hilar cholangiocarcinoma, Ann Surg Oncol 18 (2011) 872-879.
[40] S.S. Hsu, C.H. Chen, G.S. Liu, M.H. Tai, J.S. Wang, J.C. Wu, M.L. Kung, E.C. Chan, L.F. Liu, Tumorigenesis and prognostic role of hepatoma-derived growth factor in human gliomas, J Neurooncol 107 (2012) 101-109.
[41] Y.W. Lin, C.F. Li, H.Y. Chen, C.Y. Yen, L.C. Lin, C.C. Huang, H.Y. Huang, P.C. Wu, C.H. Chen, S.C. Chen, M.H. Tai, The expression and prognostic significance of hepatoma-derived growth factor in oral cancer, Oral Oncol (2012).
[42] J.M. Lee, S. Dedhar, R. Kalluri, E.W. Thompson, The epithelial-mesenchymal transition: new insights in signaling, development, and disease, J Cell Biol 172 (2006) 973-981.
[43] D. Macis, M. Cazzaniga, A. De Censi, B. Bonanni, Role of traditional and new biomarkers in breast carcinogenesis, Ecancermedicalscience 3 (2009) 157.
[44] H.C. Lien, Y.H. Hsiao, Y.S. Lin, Y.T. Yao, H.F. Juan, W.H. Kuo, M.C. Hung, K.J. Chang, F.J. Hsieh, Molecular signatures of metaplastic carcinoma of the breast by large-scale transcriptional profiling: identification of genes potentially related to epithelial-mesenchymal transition, Oncogene 26 (2007) 7859-7871.
[45] D. Sarrio, S.M. Rodriguez-Pinilla, D. Hardisson, A. Cano, G. Moreno-Bueno, J. Palacios, Epithelial-mesenchymal transition in breast cancer relates to the basal-like phenotype, Cancer Res 68 (2008) 989-997.
[46] H. Hugo, M.L. Ackland, T. Blick, M.G. Lawrence, J.A. Clements, E.D. Williams, E.W. Thompson, Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression, J Cell Physiol 213 (2007) 374-383.
[47] J. Yang, S.A. Mani, J.L. Donaher, S. Ramaswamy, R.A. Itzykson, C. Come, P. Savagner, I. Gitelman, A. Richardson, R.A. Weinberg, Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis, Cell 117 (2004) 927-939.
[48] P. Friedl, K. Wolf, Tumour-cell invasion and migration: diversity and escape mechanisms, Nat Rev Cancer 3 (2003) 362-374.
[49] D.A. Lauffenburger, A.F. Horwitz, Cell migration: a physically integrated molecular process, Cell 84 (1996) 359-369.
[50] R. Rohatgi, L. Ma, H. Miki, M. Lopez, T. Kirchhausen, T. Takenawa, M.W. Kirschner, The interaction between N-WASP and the Arp2/3 complex links Cdc42-dependent signals to actin assembly, Cell 97 (1999) 221-231.
[51] K. Kaibuchi, S. Kuroda, M. Amano, Regulation of the cytoskeleton and cell adhesion by the Rho family GTPases in mammalian cells, Annu Rev Biochem 68 (1999) 459-486.
[52] E. Zamir, B. Geiger, Molecular complexity and dynamics of cell-matrix adhesions, J Cell Sci 114 (2001) 3583-3590.
[53] D.A. Calderwood, S.J. Shattil, M.H. Ginsberg, Integrins and actin filaments: reciprocal regulation of cell adhesion and signaling, J Biol Chem 275 (2000) 22607-22610.
[54] S. Degani, F. Balzac, M. Brancaccio, S. Guazzone, S.F. Retta, L. Silengo, A. Eva, G. Tarone, The integrin cytoplasmic domain-associated protein ICAP-1 binds and regulates Rho family GTPases during cell spreading, J Cell Biol 156 (2002) 377-387.
[55] A.B. Verkhovsky, T.M. Svitkina, G.G. Borisy, Myosin II filament assemblies in the active lamella of fibroblasts: their morphogenesis and role in the formation of actin filament bundles, J Cell Biol 131 (1995) 989-1002.
[56] A.F. Chambers, A.C. Groom, I.C. MacDonald, Dissemination and growth of cancer cells in metastatic sites, Nat Rev Cancer 2 (2002) 563-572.
[57] S.J. Heasman, A.J. Ridley, Mammalian Rho GTPases: new insights into their functions from in vivo studies, Nat Rev Mol Cell Biol 9 (2008) 690-701.
[58] M.E. Doerr, J.I. Jones, The roles of integrins and extracellular matrix proteins in the insulin-like growth factor I-stimulated chemotaxis of human breast cancer cells, J Biol Chem 271 (1996) 2443-2447.
[59] A. Dardik, A. Yamashita, F. Aziz, H. Asada, B.E. Sumpio, Shear stress-stimulated endothelial cells induce smooth muscle cell chemotaxis via platelet-derived growth factor-BB and interleukin-1alpha, J Vasc Surg 41 (2005) 321-331.
[60] S. Ikeda, M. Ushio-Fukai, L. Zuo, T. Tojo, S. Dikalov, N.A. Patrushev, R.W. Alexander, Novel role of ARF6 in vascular endothelial growth factor-induced signaling and angiogenesis, Circ Res 96 (2005) 467-475.
[61] A. Konturek, M. Barczynski, S. Cichon, A. Pituch-Noworolska, J. Jonkisz, W. Cichon, Significance of vascular endothelial growth factor and epidermal growth factor in development of papillary thyroid cancer, Langenbecks Arch Surg 390 (2005) 216-221.
[62] L. Lamalice, F. Le Boeuf, J. Huot, Endothelial cell migration during angiogenesis, Circ Res 100 (2007) 782-794.
[63] H. Yamaguchi, J. Wyckoff, J. Condeelis, Cell migration in tumors, Curr Opin Cell Biol 17 (2005) 559-564.
[64] M.A. Barber, H.C. Welch, PI3K and RAC signalling in leukocyte and cancer cell migration, Bull Cancer 93 (2006) E44-52.
[65] M.C. Weiger, C.C. Wang, M. Krajcovic, A.T. Melvin, J.J. Rhoden, J.M. Haugh, Spontaneous phosphoinositide 3-kinase signaling dynamics drive spreading and random migration of fibroblasts, J Cell Sci 122 (2009) 313-323.
[66] A.J. Ridley, Rho GTPases and cell migration, J Cell Sci 114 (2001) 2713-2722.
[67] F. Furuya, C. Lu, M.C. Willingham, S.Y. Cheng, Inhibition of phosphatidylinositol 3-kinase delays tumor progression and blocks metastatic spread in a mouse model of thyroid cancer, Carcinogenesis 28 (2007) 2451-2458.
[68] N.R. Leslie, H. Maccario, L. Spinelli, L. Davidson, The significance of PTEN's protein phosphatase activity, Adv Enzyme Regul 49 (2009) 190-196.
[69] S. Zhang, D. Yu, PI(3)king apart PTEN's role in cancer, Clin Cancer Res 16 (2010) 4325-4330.
[70] C. Gawden-Bone, Z. Zhou, E. King, A. Prescott, C. Watts, J. Lucocq, Dendritic cell podosomes are protrusive and invade the extracellular matrix using metalloproteinase MMP-14, J Cell Sci 123 (2010) 1427-1437.
[71] S. Linder, M. Aepfelbacher, Podosomes: adhesion hot-spots of invasive cells, Trends Cell Biol 13 (2003) 376-385.
[72] D.A. Murphy, S.A. Courtneidge, The 'ins' and 'outs' of podosomes and invadopodia: characteristics, formation and function, Nat Rev Mol Cell Biol 12 (2011) 413-426.
[73] D.F. Seals, E.F. Azucena, Jr., I. Pass, L. Tesfay, R. Gordon, M. Woodrow, J.H. Resau, S.A. Courtneidge, The adaptor protein Tks5/Fish is required for podosome formation and function, and for the protease-driven invasion of cancer cells, Cancer Cell 7 (2005) 155-165.
[74] S. Linder, P. Kopp, Podosomes at a glance, J Cell Sci 118 (2005) 2079-2082.
[75] R.L. Berdeaux, B. Diaz, L. Kim, G.S. Martin, Active Rho is localized to podosomes induced by oncogenic Src and is required for their assembly and function, J Cell Biol 166 (2004) 317-323.
[76] M.A. Chellaiah, R.S. Biswas, D. Yuen, U.M. Alvarez, K.A. Hruska, Phosphatidylinositol 3,4,5-trisphosphate directs association of Src homology 2-containing signaling proteins with gelsolin, J Biol Chem 276 (2001) 47434-47444.
[77] A.S. Sechi, J. Wehland, The actin cytoskeleton and plasma membrane connection: PtdIns(4,5)P(2) influences cytoskeletal protein activity at the plasma membrane, J Cell Sci 113 Pt 21 (2000) 3685-3695.
[78] V. Moreau, F. Tatin, C. Varon, E. Genot, Actin can reorganize into podosomes in aortic endothelial cells, a process controlled by Cdc42 and RhoA, Mol Cell Biol 23 (2003) 6809-6822.
[79] M. Gimona, I. Kaverina, G.P. Resch, E. Vignal, G. Burgstaller, Calponin repeats regulate actin filament stability and formation of podosomes in smooth muscle cells, Mol Biol Cell 14 (2003) 2482-2491.
[80] R. Buccione, J.D. Orth, M.A. McNiven, Foot and mouth: podosomes, invadopodia and circular dorsal ruffles, Nat Rev Mol Cell Biol 5 (2004) 647-657.
[81] A.B. Jaffe, A. Hall, Rho GTPases: biochemistry and biology, Annu Rev Cell Dev Biol 21 (2005) 247-269.
[82] S. Etienne-Manneville, A. Hall, Rho GTPases in cell biology, Nature 420 (2002) 629-635.
[83] J.V. Narron, T.D. Stoops, K. Barringhaus, M. Matsumura, A.D. Everett, Hepatoma-derived growth factor is expressed after vascular injury in the rat and stimulates smooth muscle cell migration, Pediatr Res 59 (2006) 778-783.
[84] J. Mao, Z. Xu, Y. Fang, H. Wang, J. Xu, J. Ye, S. Zheng, Y. Zhu, Hepatoma-derived growth factor involved in the carcinogenesis of gastric epithelial cells through promotion of cell proliferation by Erk1/2 activation, Cancer Sci 99 (2008) 2120-2127.
[85] J. Meng, W. Xie, L. Cao, C. Hu, Z. Zhe, shRNA targeting HDGF suppressed cell growth and invasion of squamous cell lung cancer, Acta Biochim Biophys Sin (Shanghai) 42 (2010) 52-57.
[86] Z. Guo, Y. He, S. Wang, A. Zhang, P. Zhao, C. Gao, B. Cao, Various effects of hepatoma-derived growth factor on cell growth, migration and invasion of breast cancer and prostate cancer cells, Oncol Rep 26 (2011) 511-517.
[87] S.C. Chen, M.L. Kung, T.H. Hu, H.Y. Chen, J.C. Wu, H.M. Kuo, H.E. Tsai, Y.W. Lin, Z.H. Wen, J.K. Liu, M.H. Yeh, M.H. Tai, Hepatoma-Derived Growth Factor Regulates breast cancer cell invasion by Modulating Epithelial Mesenchymal Transition, J Pathol (2012).
[88] G.S. Liu, L.F. Liu, C.J. Lin, J.C. Tseng, M.J. Chuang, H.C. Lam, J.K. Lee, L.C. Yang, J.H. Chan, S.L. Howng, M.H. Tai, Gene transfer of pro-opiomelanocortin prohormone suppressed the growth and metastasis of melanoma: involvement of alpha-melanocyte-stimulating hormone-mediated inhibition of the nuclear factor kappaB/cyclooxygenase-2 pathway, Mol Pharmacol 69 (2006) 440-451.
[89] A.I. Iliev, J.R. Djannatian, R. Nau, T.J. Mitchell, F.S. Wouters, Cholesterol-dependent actin remodeling via RhoA and Rac1 activation by the Streptococcus pneumoniae toxin pneumolysin, Proc Natl Acad Sci U S A 104 (2007) 2897-2902.
[90] S. Bharti, H. Inoue, K. Bharti, D.S. Hirsch, Z. Nie, H.Y. Yoon, V. Artym, K.M. Yamada, S.C. Mueller, V.A. Barr, P.A. Randazzo, Src-dependent phosphorylation of ASAP1 regulates podosomes, Mol Cell Biol 27 (2007) 8271-8283.
[91] M.H. Tai, H. Cheng, J.P. Wu, Y.L. Liu, P.R. Lin, J.S. Kuo, C.J. Tseng, S.F. Tzeng, Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion, Exp Neurol 183 (2003) 508-515.
[92] C.R. Wang, A.L. Shiau, S.Y. Chen, L.L. Lin, M.H. Tai, G.S. Shieh, P.R. Lin, Y.T. Yo, C.H. Lee, S.M. Kuo, M.F. Liu, I.M. Jou, C.Y. Yang, P.C. Shen, H.L. Lee, C.L. Wu, Amelioration of collagen-induced arthritis in rats by adenovirus-mediated PTEN gene transfer, Arthritis Rheum 58 (2008) 1650-1656.
[93] Y.H. Kao, C.L. Chen, B. Jawan, Y.H. Chung, C.K. Sun, S.M. Kuo, T.H. Hu, Y.C. Lin, H.H. Chan, K.H. Cheng, D.C. Wu, S. Goto, Y.F. Cheng, D. Chao, M.H. Tai, Upregulation of hepatoma-derived growth factor is involved in murine hepatic fibrogenesis, J Hepatol 52 (2010) 96-105.
[94] A.M. Hopkins, S.V. Walsh, P. Verkade, P. Boquet, A. Nusrat, Constitutive activation of Rho proteins by CNF-1 influences tight junction structure and epithelial barrier function, J Cell Sci 116 (2003) 725-742.
[95] C.D. Nobes, A. Hall, Rho, rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia, Cell 81 (1995) 53-62.
[96] S.C. Chen, M.L. Kung, T.H. Hu, H.Y. Chen, J.C. Wu, H.M. Kuo, H.E. Tsai, Y.W. Lin, Z.H. Wen, J.K. Liu, M.H. Yeh, M.H. Tai, Hepatoma-derived growth factor regulates breast cancer cell invasion by modulating epithelial-mesenchymal transition, J Pathol (2012).
[97] Y.R. Pan, C.L. Chen, H.C. Chen, FAK is required for the assembly of podosome rosettes, J Cell Biol 195 (2011) 113-129.
[98] U.K. Mukhopadhyay, R. Eves, L. Jia, P. Mooney, A.S. Mak, p53 suppresses Src-induced podosome and rosette formation and cellular invasiveness through the upregulation of caldesmon, Mol Cell Biol 29 (2009) 3088-3098.
[99] C. Varon, F. Tatin, V. Moreau, E. Van Obberghen-Schilling, S. Fernandez-Sauze, E. Reuzeau, I. Kramer, E. Genot, Transforming growth factor beta induces rosettes of podosomes in primary aortic endothelial cells, Mol Cell Biol 26 (2006) 3582-3594.
[100] A.E. Osiak, G. Zenner, S. Linder, Subconfluent endothelial cells form podosomes downstream of cytokine and RhoGTPase signaling, Exp Cell Res 307 (2005) 342-353.
[101] S. Rousseau, F. Houle, J. Huot, Integrating the VEGF signals leading to actin-based motility in vascular endothelial cells, Trends Cardiovasc Med 10 (2000) 321-327.
[102] M.A. Chellaiah, N. Soga, S. Swanson, S. McAllister, U. Alvarez, D. Wang, S.F. Dowdy, K.A. Hruska, Rho-A is critical for osteoclast podosome organization, motility, and bone resorption, J Biol Chem 275 (2000) 11993-12002.
[103] N.R. Leslie, X. Yang, C.P. Downes, C.J. Weijer, The regulation of cell migration by PTEN, Biochem Soc Trans 33 (2005) 1507-1508.
[104] F. Vazquez, S. Ramaswamy, N. Nakamura, W.R. Sellers, Phosphorylation of the PTEN tail regulates protein stability and function, Mol Cell Biol 20 (2000) 5010-5018.
[105] N.R. Leslie, C.P. Downes, PTEN: The down side of PI 3-kinase signalling, Cell Signal 14 (2002) 285-295.
[106] L.M. Chow, S.J. Baker, PTEN function in normal and neoplastic growth, Cancer Lett 241 (2006) 184-196.
[107] J. Liliental, S.Y. Moon, R. Lesche, R. Mamillapalli, D. Li, Y. Zheng, H. Sun, H. Wu, Genetic deletion of the Pten tumor suppressor gene promotes cell motility by activation of Rac1 and Cdc42 GTPases, Curr Biol 10 (2000) 401-404.
[108] N. Nameki, N. Tochio, S. Koshiba, M. Inoue, T. Yabuki, M. Aoki, E. Seki, T. Matsuda, Y. Fujikura, M. Saito, M. Ikari, M. Watanabe, T. Terada, M. Shirouzu, M. Yoshida, H. Hirota, A. Tanaka, Y. Hayashizaki, P. Guntert, T. Kigawa, S. Yokoyama, Solution structure of the PWWP domain of the hepatoma-derived growth factor family, Protein Sci 14 (2005) 756-764.
[109] C. Qiu, K. Sawada, X. Zhang, X. Cheng, The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds, Nat Struct Biol 9 (2002) 217-224.
[110] L.M. Slater, M.D. Allen, M. Bycroft, Structural variation in PWWP domains, J Mol Biol 330 (2003) 571-576.
[111] M.S. van der Heijden, R. Bernards, Inhibition of the PI3K pathway: hope we can believe in?, Clin Cancer Res 16 (2010) 3094-3099.
[112] J.W. Miller, J.B. King, D.A. Joseph, L.C. Richardson, Breast cancer screening among adult women - behavioral risk factor surveillance system, United States, 2010, MMWR Surveill Summ 61 (2012) 46-50.
[113] L. Harris, H. Fritsche, R. Mennel, L. Norton, P. Ravdin, S. Taube, M.R. Somerfield, D.F. Hayes, R.C. Bast, Jr., American Society of Clinical Oncology 2007 update of recommendations for the use of tumor markers in breast cancer, J Clin Oncol 25 (2007) 5287-5312.
[114] A. Antoniou, P.D. Pharoah, S. Narod, H.A. Risch, J.E. Eyfjord, J.L. Hopper, N. Loman, H. Olsson, O. Johannsson, A. Borg, B. Pasini, P. Radice, S. Manoukian, D.M. Eccles, N. Tang, E. Olah, H. Anton-Culver, E. Warner, J. Lubinski, J. Gronwald, B. Gorski, H. Tulinius, S. Thorlacius, H. Eerola, H. Nevanlinna, K. Syrjakoski, O.P. Kallioniemi, D. Thompson, C. Evans, J. Peto, F. Lalloo, D.G. Evans, D.F. Easton, Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies, Am J Hum Genet 72 (2003) 1117-1130.
[115] R. Yerushalmi, R. Woods, P.M. Ravdin, M.M. Hayes, K.A. Gelmon, Ki67 in breast cancer: prognostic and predictive potential, Lancet Oncol 11 (2010) 174-183.
[116] Y. Nieto, F. Nawaz, R.B. Jones, E.J. Shpall, S. Nawaz, Prognostic significance of overexpression and phosphorylation of epidermal growth factor receptor (EGFR) and the presence of truncated EGFRvIII in locoregionally advanced breast cancer, J Clin Oncol 25 (2007) 4405-4413.
[117] A. Zhang, W. Long, Z. Guo, G. Liu, Z. Hu, Y. Huang, Y. Li, T.M. Grabinski, J. Yang, P.X. Zhao, A.D. Everett, Y. Zhang, B.B. Cao, Development and clinical evaluation of a multi-purpose mAb and a sandwich ELISA test for hepatoma-derived growth factor in lung cancer patients, J Immunol Methods 355 (2010) 61-67.
[118] H. Ren, Z. Chu, L. Mao, Antibodies targeting hepatoma-derived growth factor as a novel strategy in treating lung cancer, Mol Cancer Ther (2009).
[119] R. Kalluri, E.G. Neilson, Epithelial-mesenchymal transition and its implications for fibrosis, J Clin Invest 112 (2003) 1776-1784.
[120] M. Zeisberg, E.G. Neilson, Biomarkers for epithelial-mesenchymal transitions, J Clin Invest 119 (2009) 1429-1437.
[121] R. Kalluri, R.A. Weinberg, The basics of epithelial-mesenchymal transition, J Clin Invest 119 (2009) 1420-1428.
[122] D.C. Radisky, Epithelial-mesenchymal transition, J Cell Sci 118 (2005) 4325-4326.
[123] M.A. Huber, N. Kraut, H. Beug, Molecular requirements for epithelial-mesenchymal transition during tumor progression, Curr Opin Cell Biol 17 (2005) 548-558.
[124] S. Grunert, M. Jechlinger, H. Beug, Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis, Nat Rev Mol Cell Biol 4 (2003) 657-665.
[125] J.P. Thiery, Epithelial-mesenchymal transitions in tumour progression, Nat Rev Cancer 2 (2002) 442-454.
[126] A.M. Doerner, B.L. Zuraw, TGF-beta1 induced epithelial to mesenchymal transition (EMT) in human bronchial epithelial cells is enhanced by IL-1beta but not abrogated by corticosteroids, Respir Res 10 (2009) 100.
[127] G.S. Liu, H.E. Tsai, W.T. Weng, L.F. Liu, C.H. Weng, M.R. Chuang, H.C. Lam, C.S. Wu, R. Tee, Z.H. Wen, S.L. Howng, M.H. Tai, Systemic pro-opiomelanocortin expression induces melanogenic differentiation and inhibits tumor angiogenesis in established mouse melanoma, Hum Gene Ther 22 (2011) 325-335.
[128] R.B. Hazan, G.R. Phillips, R.F. Qiao, L. Norton, S.A. Aaronson, Exogenous expression of N-cadherin in breast cancer cells induces cell migration, invasion, and metastasis, J Cell Biol 148 (2000) 779-790.
[129] A. Sehrawat, S.V. Singh, Benzyl isothiocyanate inhibits epithelial-mesenchymal transition in cultured and xenografted human breast cancer cells, Cancer Prev Res (Phila) 4 (2011) 1107-1117.
[130] H. Ren, Z. Chu, L. Mao, Antibodies targeting hepatoma-derived growth factor as a novel strategy in treating lung cancer, Mol Cancer Ther 8 (2009) 1106-1112.
[131] S.Y. Lin, J. Yang, A.D. Everett, C.V. Clevenger, M. Koneru, P.J. Mishra, B. Kamen, D. Banerjee, J. Glod, The isolation of novel mesenchymal stromal cell chemotactic factors from the conditioned medium of tumor cells, Exp Cell Res 314 (2008) 3107-3117.
[132] F.T. Martin, R.M. Dwyer, J. Kelly, S. Khan, J.M. Murphy, C. Curran, N. Miller, E. Hennessy, P. Dockery, F.P. Barry, T. O'Brien, M.J. Kerin, Potential role of mesenchymal stem cells (MSCs) in the breast tumour microenvironment: stimulation of epithelial to mesenchymal transition (EMT), Breast Cancer Res Treat 124 (2010) 317-326.
[133] M. Mimeault, S.K. Batra, Interplay of distinct growth factors during epithelial mesenchymal transition of cancer progenitor cells and molecular targeting as novel cancer therapies, Ann Oncol 18 (2007) 1605-1619.
[134] A. Safina, M.Q. Ren, E. Vandette, A.V. Bakin, TAK1 is required for TGF-beta 1-mediated regulation of matrix metalloproteinase-9 and metastasis, Oncogene 27 (2008) 1198-1207.
[135] M.K. Wendt, J.A. Smith, W.P. Schiemann, Transforming growth factor-beta-induced epithelial-mesenchymal transition facilitates epidermal growth factor-dependent breast cancer progression, Oncogene 29 (2010) 6485-6498.
[136] J. Yang, A.D. Everett, Hepatoma-derived growth factor represses SET and MYND domain containing 1 gene expression through interaction with C-terminal binding protein, J Mol Biol 386 (2009) 938-950.
[137] G. Chinnadurai, The transcriptional corepressor CtBP: a foe of multiple tumor suppressors, Cancer Res 69 (2009) 731-734.

[web.1] http://qap.sdsu.edu/index.html
[web.2] http://www.cancer.org/index
[web.3] http://www.hkbcf.org/content.php?cid=10000&tid=2&lang=eng




電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code