Responsive image
博碩士論文 etd-0804114-005229 詳細資訊
Title page for etd-0804114-005229
論文名稱
Title
創新激磁式同步發電機之風力發電系統
A Novel Wind Power Generator Framework with an Excitation Synchronous Generator
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
113
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-28
繳交日期
Date of Submission
2014-09-04
關鍵字
Keywords
相位追蹤、伺服馬達、激磁式同步發電機、最大功率追蹤、風力發電系統
Servo Motor, Phase Tracking Technology, Excitation Synchronous Generator, Maximum Power Tracking, Wind Power Generator
統計
Statistics
本論文已被瀏覽 5755 次,被下載 42
The thesis/dissertation has been browsed 5755 times, has been downloaded 42 times.
中文摘要
本文提出一創新型激磁式同步發電機之風力發電系統,應用於並聯與獨立型風力發電系統。在此創新系統中,利用同軸架構和相位追蹤技術,激磁式同步發電機和伺服馬達轉子速度追蹤電網的頻率與相位,以此方式發電機的轉速、電壓頻率以及相位跟隨市電電壓頻率,發電機的輸出功率可以直接傳輸到電網或獨立負載不需要外加電源整流器或逆變器。此外提出的功率控制策略管控發電機的激磁場電流以達成穩定電壓、最大功率追蹤及減少伺服馬達功率消耗。在獨立型應用中,當風力小於負載需求時,能量流管理系統會增加馬達扭力提供正向能量輸出給負載,反之在風力能量大於負載時發電機多餘的能量會被儲存到蓄電池中,馬達以最低能量保持系統穩定速度。本文藉由軟體模擬在大範圍輸入風力變動下測試系統的暫態及穩態響應。由雛型之實驗結果證明本創新風力發電系統具有高效能。
Abstract
Abstract-This dissertation presents a novel wind power generator framework (WPGF) with an excitation synchronous generator for grid-connection and stand-alone applications. In proposed framework, the excitation synchronous generator and servo motor speed is designed to track the grid frequency and phase using coaxial configuration and phase tracking technology. The generator output voltage is controlled to be in phase with grid voltage, therefore the generator output power can thus be directly connected to the grid network or independent loading without additional power converter. The presented power control strategies govern the exciter current to achieve stable voltage, maximum power tracking, and diminishing servo motor power consumption. In stand-alone system, while the wind power is less than the needs of the consumptive loads, the proposed power flow management system (PFMS) increases motor torque to provide a positive power for the loads, meanwhile keeps the generator speed in constant. Conversely, during the period of wind power greater than output loads, the redundant power of generator production is charged to the battery pack and the motor speed remains constant with very low power consumption. The system transient and steady state responses over a wide range of input wind power are examined using simulated software. Experimental results from a laboratory prototype ESWPG demonstrate high performance of the proposed wind power generator.
目次 Table of Contents
中文審定書................................................i
英文審定書................................................ii
中文摘要.................................................iv
Abstract..................................................v
Table of Contents..........................................vi
List of Figures...........................................ix
List of Tables............................................xiii
Chapter 1 1
Introduction 1
1.1 Motive and Background 1
1.2 System Overview 2
1.3 Organization of the Dissertation 3
Chapter 2 5
Wind Power Generator System Development 5
2.1 Classification of Wind Generators 5
2.2 Classification of Generators 8
2.2.1 Asynchronous Squirrel-cage Generator 9
2.2.2 Doubly-fed Induction Generator 10
2.2.3 Direct-drive Permanent Magnet Synchronous Generator 11
2.2.4 Excitation Synchronous Generator 12
2.3 The Advantages of Excitation Synchronous Generator 13
Chapter 3 15
Excitation Synchronous Wind Power Generator with Maximum Power Tracking Scheme 15
3.1 Basic Principle 15
3.2 The Control System Framework 17
3.3 Robust Integral Structure Control 19
3.4 PM Synchronous Motor Model 22
3.5 Phase Tracking Control 28
3.6 Maximum Power Tracking Control 29
3.7 Simulation Results 31
Chapter 4 36
Stand-alone Excitation Synchronous Generator with Power Flow Management 36
4.1 The Structure of Stand-alone Wind Power Generator 37
4.2 Power Flow Management 40
4.3 Automatic Voltage Control Unit 43
4.4 Phase Tracking Control Strategy 47
4.5 Simulation Results 48
Chapter 5 52
Generator Mathematical Model and Matlab/Simulink Simulation 52
5.1 The Mathematical Model of Excitation Synchronous Generator 52
5.1.1 Stator Formulation 53
5.2 Mathematical Model of Grid-Connection and Loads 55
5.3 Simulation Results 57
5.3.1 Generator Model Confirmation 57
5.3.2 Phase Tracking Simulation 59
5.3.3 Power Factor Correction Simulation 62
5.3.4 Wind Speed Varying Simulation 63
Chapter 6 67
Experiments 67
6.1 The MCU Hardware 67
6.1.1 CPU Timer Module 68
6.1.2 ADC Module 70
6.1.3 ePWM Module 71
6.1.4 eQEP Module 72
6.1.5 General Purpose I/O (GPIO) 72
6.2 Experiment Platform 73
6.3 Control Circuits 76
6.3.1 Voltage Feedback Circuit 77
6.3.2 Current Feedback Circuit 78
6.3.3 Pulse Type Position Control Circuit 79
6.3.4 Power Contactor Control Circuit 80
Chapter 7 82
Results and Discussion 82
7.1 Grid-connection ESWPG 83
7.2 Grid Connection Responses 87
7.3 Stand-Alone ESWPG 88
7.4 Sub-Conclusion 92
Chapter 8 93
Conclusion and Future Works 93
8.1 Conclusion 93
8.2 Future Works 94
Reference 96
參考文獻 References
Reference
[1] M. Liserre, Cá, R. rdenas, M. Molinas, J. Rodriguez, "Overview of Multi-MW Wind Turbines and Wind Parks ," IEEE Trans. on Industrial Electronics, vol. 58, no. 4, pp. 1081 - 1095 , April 2011.
[2] V. Delli Colli, F. Marignetti, C. Attaianese, "Analytical and Multiphysics Approach to the Optimal Design of a 10-MW DFIG for Direct-Drive Wind Turbines ," IEEE Trans. on Industrial Electronics, vol. 59, no. 7, pp. 2791-2799, Jul 2012.
[3] B. Singh, S. Sharma, "Design and Implementation of Four-Leg Voltage-Source-Converter-Based VFC for Autonomous Wind Energy Conversion System ," IEEE Trans. on Industrial Electronics, vol. 59, no. 12, pp. 4694-4703, Dec. 2012.
[4] A. Di Gerlando, G. Foglia, M.F. Iacchetti, R. Perini, "Axial Flux PM Machines With Concentrated Armature Windings: Design Analysis and Test Validation of Wind Energy Generators ," IEEE Trans. on Industrial Electronics, vol. 58, no. 9, pp. 3795 - 3805 , Sept. 2011.
[5] Shao Zhang, King-Jet Tseng, D.M. Vilathgamuwa, T.D. Nguyen, Xiao-Yu Wang, "Design of a Robust Grid Interface System for PMSG-Based Wind Turbine Generators ," IEEE Trans. on Industrial Electronics, vol. 58, no. 1, pp. 316 - 328 , Jan. 2011.
[6] 陳韋廷, "創新風力發電系統之激磁式同步發電機之最大功率追蹤控制
," 國立中山大學電機工程學系碩士論文,民國102年2月。
[7] 蘇謙懷, “創新風力發電之激磁式同步發電機之穩定度控制," 國立中山大學電機工程學系碩士論文,民國102年2月。
[8] Faa-Jeng Lin ; Kuang-Hsiung Tan ; Dun-Yi Fang ; Yih-Der Lee, " Intelligent controlled three-phase squirrel-cage induction generator system using wavelet fuzzy neural network for wind power Renewable Power Generation," IET Renewable Power Generation, Vol. 7, no.5, pp. 552 – 564, Sept. 2013.
[9] Bueno, E.J. ; Cobreces, S. ; Rodriguez, F.J. ; Hernandez, A. ; Espinosa, F. , " Design of a Back-to-Back NPC Converter Interface for Wind Turbines With Squirrel-Cage Induction Generator," IEEE Trans. on Energy Conversion vol. 23, no. 3, pp. 932 - 945, Sept. 2008.
[10] M. Chinchilla, S. Arnaltes, and J. C. Burgos, "Control of permanent magnet generators applied to variable-speed wind-energy systems connected to the grid," IEEE Trans. Energy Convers., vol. 21, no. 1, pp. 130–135, Mar. 2006.
[11] Hossein Hojabri, Hossein Mokhtari, Member, IEEE, and Liuchen Chang, Senior Member, IEEE, "Reactive Power Control of Permanent-Magnet Synchronous Wind Generator With Matrix Converter," IEEE Trans. Power deliver., vol. 28, no. , pp. 575–584, Apr. 2013.
[12] Song Le-peng ; Tang De-dong ; Wang Debiao ; Li Hui ; "Simulation for strategy of maximal wind energy capture of doubly fed induction generators," IEEE International Conference on Cognitive Informatics, pp.869-873, Jul. 2010.
[13] Wang Qi ; Chen Xiao-hu ; Fei Wan-min ; Ji Yan-chao ; "Study of brushless doubly-fed control for VSCF wind power generation system connected to grid," International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, pp.2453 - 2458, Apr. 2008.
[14] Tzuen-Lih Chern, Ping-Lung Pan, Yu-Lun Chern, Wei-Ting Chern, Whei-Min Lin, Member, IEEE, Chih-Chiang Cheng, Jyh-Horng Chou, Senior Member, IEEE, and Long-Chen Chen, "Excitation Synchronous Wind Power Generators With Maximum Power Tracking Scheme," IEEE Trans. Sustainable Energy., Accepted. May. 2014.
[15] 陳俊宇,"高效率無感測直流變頻壓縮機驅動器之研製," 國立中山大學電機工程學系碩士論文,民國98年12月。
[16] 士林電機, "MR-J2S-□A Instruction Manual(English) ," 三菱電機伺服馬達Manual。
[17] 陳遵立,黃聰謀,蘇謙懷, "利用PI控制器同步風力發電激磁控制 The Control Of Synchronism Wind Turbine using PI Controller," 2011台灣風能學術研討會,G2-007,台灣澎湖科技大學,2010年12月17日。
[18] IEEE Guide, "Test Procedures for Synchronous Machines," IEEE Standards,12 December 1995.
[19] T.-L. Chern, L.-H. Liu, P.-l. Pan, T.-M. Huang, D.-M. Tsay, J.-H. Kuang, L.-J. Chen, "Digital signal processing-based sensor-less permanent magnet synchronous motor driver with quasi-sine pulse-width modulation for air-conditioner rotary compressor," IET Electr. Power Appl., Vol. 6, No. 6, pp. 302-309, Sep. 2012.
[20] Chang, G. K., Chern, T. L.,and Tsay, D. M., "Globoidal Cam Indexing Servo Drive Control by IVSMFC With Load Torque Estimator," IEEE Trans. on Industry Applications, vol. 38, no. 5, pp. 1326-1333, Sep. 2002.
[21] Chern, T. L., Chang, J. and Chang, G. K.,"DSP-based integral variable structure model following control for brushless DC motor drives," IEEE Trans. on Power Electronics, vol. 12, no. 1, pp. 53-63, Jan. 1997.
[22] Tzuen-Lih Chern; Ping-Lung Pan; Yu-Lun Chern., Der-Min Tsay; "Sensorless speed control of BLDC motor using six step square wave and rotor position detection," ICIEA, 5th IEEE Conference, pp. 1358 – 1362, June, 2010.
[23] Ping-Lung Pan; Tzuen-Lih Chern; Jao-Hwa Kuang., "Sliding mode control for PWM single phase boost power factor correction," ICIEA, 5th IEEE Conference, pp. 1247 - 1252, June, 2010.
[24] 趙安立,"無感測轉速控制驅動器應用於雙相半波無刷直流風扇馬達," 國立中山 大學電機工程學系碩士論文,民國96 年7 月。
[25] Chern, T.-L. ; Liu, L.-H. ; Pan, P.-L. ; Huang, T.-M. ; Tsay, D.-M. ; Kuang, J.-H. ; Chen, L.-J. "Digital signal processing-based sensor-less permanent magnet synchronous motor driver with quasi-sine pulse-width modulation for air-conditioner rotary compressor," IET, Electric Power Applications, Vol. 6 , no. 6 , pp. 302 – 309, July, 2012.
[26] Chern, T.L.; Pan, P.L., "The Research of Smart Li-ion Battery Management System," ICIEA, 2nd IEEE Conference, pp. 2273 - 2277, May, 2007.
[27] 林敦頤,"強韌型積分結構控制電液壓伺服驅動器之研製," 國立中山大學電機工程學系碩士論文,民國99 年9 月。
[28] Texas Instruments, "Data sheets," http://www.ti.com/.
[29] Data sheet "Iskra SQ0214”.
[30] LEM,"Current Transducer CKSR series Data Sheet," LEM, http://www.lem.com/.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code