Responsive image
博碩士論文 etd-0804114-013138 詳細資訊
Title page for etd-0804114-013138
論文名稱
Title
以加載氫氧化鈣之奈米磁性四氧化三鐵為催化劑在微波條件下生產生質柴油之研究
Production of biodiesel under microwave condition with nano-magnetic Ca(OH)2-Fe3O4 catalyst
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
125
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-24
繳交日期
Date of Submission
2014-09-09
關鍵字
Keywords
痲瘋樹油、蓖麻油、轉酯化反應、加載氫氧化鈣之奈米四氧化三鐵、微波系統、廢食用油、生質柴油
Jatropha oil, castor oil, Transesterification, Ca(OH)2-nano-Fe3O4, Microwave, Biodiesel, Waste cooking oil
統計
Statistics
本論文已被瀏覽 5684 次,被下載 45
The thesis/dissertation has been browsed 5684 times, has been downloaded 45 times.
中文摘要
本研究以廢食用油與痲瘋樹油及蓖麻油與痲瘋樹油以1:1比例之混合油作為製作生質柴油之原料油、加載氫氧化鈣之奈米級四氧化三鐵為催化劑、使用微波加熱系統進行轉酯化反應,並以反應曲面法探討反應時間、反應溫度、醇油比對生質柴油產率之影響,且使用微波加熱系統進行轉酯化反應,以縮短反應時間。本研究以奈米級四氧化三鐵為載體、氯化鈣為鈣源、氫氧化鈉為沉澱劑,以沉澱的方式將氫氧化鈣載入奈米級四氧化三鐵的孔隙中作為催化劑,並以XRD、ESEM、EDS儀器進行催化劑成分及粒徑分析。由實驗結果可知以加載氫氧化鈣之奈米級四氧化三鐵作為催化劑,以廢食用油、痲瘋樹油、蓖麻油與痲瘋樹油以1:1比例之混合油為原料油,在操作條件設定為催化劑添加量2 wt%、醇油比12:1、加熱溫度65℃、加熱時間分別為35 min、35 min、60 min可獲得最佳產率分別為95.2 wt%、97.8 wt%、97.6 wt%。比較三種原料油可得知,利用痲瘋樹油進行轉酯化反應之效果優於其他兩種原料油。進行催化劑回收及重複使用實驗之結果得知,催化劑經重複使用10次後,其損失率約5 wt%,可以了解此催化劑回收效率良好,而利用痲瘋樹油為原料油進行重複實驗之產率重97.8 wt%降至97.2 wt%,可見其穩定性佳。而藉由傳統與微波加熱比較,可以得知在微波條件下進行轉酯化反應可以節省約90 %的能源損耗,達到節約能源的目的。
Abstract
This study used waste cooking oil, jatropha oil, castor oil and jatropha oil mix with ratio of 1:1 as the raw material for investigating effects of reaction time, reaction temperature, methanol-to-oil ratio on biodiesel yield by Response surface methodology(RSM). The study speeds up the transesterification and makes the short reaction time under microwave conditions. This study investigated nano-Fe3O4 as the acceptor, CaCl2 as the Ca source, and NaOH as the precipitant. The catalyst is loading with Ca(OH)2 on the pore of nano-Fe3O4 with precipitation. The ingredient and particle size analysis of catalyst can be known from the X-ray Diffractometer (XRD), Energy Dispersive Spectrometry(EDS) and Environment Scanning Electron Micrograph (ESEM). The experimental results revealed that using nano-magnetic Ca(OH)2-nano-Fe3O4 as the catalyst, and waste cooking oil, jatropha oil, castor oil and jatropha oil mix with ratio of 1:1 as the raw material. The best operational condition (yield 95.2 wt%、97.8 wt%、97.6 wt%) includes addition of 2 wt% catalyst, the methanol-to-oil ratio 12:1, reaction temperature 65℃, and reaction time 35 min, 35 min, 60 min. Comparing with three raw material, this data indicates that jatropha oil is better than others raw material for biodiesel production. In the catalyst recycle and reusing experimental results revealed that the catalyst reused after 10 times would lose 5 wt%, then we found this catalyst are recyclability and using jatropha oil as the raw material after reusing 10 times, the biodiesel yield reduse from 97.8 wt% to 97.2 wt%, we found this catalyst are stability. Comparing with traditional heating and microwave heating, this data indicates that transesterification under the microwave condition can save 90 % energy, this way could achieve energy saving.
目次 Table of Contents
謝 誌 ii
摘要 iv
ABSTRACT v
目錄 vi
表次 xii
第一章 前言 1
1-1 研究緣起 1
1-2 研究目標 3
第二章 文獻回顧 4
2-1 國際能源現況 4
2-2 生質柴油起源與特性 8
2-2-1 生質柴油起源 8
2-2-2 生質柴油成長趨勢 9
2-2-3 生質柴油之物化性質 12
2-3 生質柴油之原料 15
2-3-1 廢食用油 15
2-3-2 痲瘋樹油 16
2-3-3 蓖麻油 18
2-4 生質柴油製作之方法 20
2-5 生質柴油催化劑之種類 25
2-5-1 酸性催化劑(Acid Catalyst) 25
2-5-2 鹼性催化劑(Alkali Catalyst) 26
2-5-3 酵素催化劑(Enzyme catalyst) 27
2-5-4 均相及非均相催化劑之比較 28
2-6奈米材料的介紹 30
2-6-1奈米的起源 30
2-6-2 奈米的定義 30
2-6-3 奈米材料 31
2-6-4 奈米材料之特性 32
2-6-5 奈米材料製備相關技術 34
2-6-6 奈米材料之應用領域 35
2-7 四氧化三鐵 36
2-7-1 氧化鐵與四氧化三鐵 36
2-7-2 四氧化三鐵的合成 38
2-7-3 氫氧化鈣之特性 39
2-8 微波系統 40
2-9 實驗設計法 43
2-9-1 應答曲面法 44
2-9-2 中心組合設計(central composite design) 45
第三章 研究方法與流程 46
3-1 研究架構與流程 46
3-2 生質柴油製作材料與設備 48
3-2-1 實驗材料與藥品 48
3-2-2實驗設備 50
3-3催化劑之製備方法 55
3-3-1加載氫氧化鈣之奈米級四氧化三鐵催化劑製備 55
3-3-2 加載鈣離子之奈米級四氧化三鐵回收方式 55
3-3-3 加載氫氧化鈣之奈米級四氧化三鐵成份及結構分析 55
3-3-4 環境掃描式電子顯微鏡(ESEM)檢測結晶與成份 56
3-4 油品酸價及皂化價測定 57
3-4-1皂化價之測定 57
3-4-2 酸價之測定 58
3-5 生質柴油製作流程與方法 60
3-6 生質柴油產率分析 62
3-7 反應曲面之實驗設計 65
第四章 結果與討論 66
4-1 加載氫氧化鈣之奈米級四氧化三鐵之性質探討 66
4-1-1 加載氫氧化鈣之奈米級四氧化三鐵XRD分析 66
4-1-2 加載氫氧化鈣之奈米級四氧化三鐵結構與成份 67
4-1-3加載氫氧化鈣之奈米級四氧化三鐵粒徑與比表面積 69
4-2 油品特性的分析 70
4-3 應答曲面法探討以加載氫氧化鈣之奈米級四氧化三鐵催化廢食用油生產生質柴油之最佳潛勢 72
4-3-1模式模擬以加載氫氧化鈣之奈米級四氧化三鐵催化廢食用油生產生質柴油之反應曲面 72
4-3-2廢食用油生產生質柴油之應答曲面法直交表中醇油比的探討 75
4-3-3廢食用油生產生質柴油之應答曲面法直交表中加熱溫度的探討 76
4-3-4廢食用油生產生質柴油之應答曲面法直交表中加熱時間的探討 77
4-3-5廢食用油生產生質柴油之應答曲面法軸點增加實驗之探討 79
4-4 應答曲面法探討以加載氫氧化鈣之奈米級四氧化三鐵催化痲瘋樹油生產生質柴油之最佳潛勢 80
4-4-1模式模擬以加載氫氧化鈣之奈米級四氧化三鐵催化痲瘋樹油生產生質柴油之反應曲面 80
4-4-2痲瘋樹油生產生質柴油之應答曲面法直交表中醇油比的探討 82
4-4-3痲瘋樹油生產生質柴油之應答曲面法直交表中加熱溫度的探討 84
4-4-4痲瘋樹油生產生質柴油之應答曲面法直交表中加熱時間的探討 85
4-4-5痲瘋樹油生產生質柴油之應答曲面法軸點增加實驗之探討 86
4-5 應答曲面法探討以加載氫氧化鈣之奈米級四氧化三鐵催化痲瘋樹油與蓖麻油1:1之混合油生產生質柴油之最佳潛勢 88
4-5-1模式模擬以加載氫氧化鈣之奈米級四氧化三鐵催化痲瘋樹油與蓖麻油1:1之混合油生產生質柴油之反應曲面 88
4-5-2痲瘋樹油與蓖麻油1:1之混合油生產生質柴油之應答曲面法直交表中醇油比的探討 91
4-5-3痲瘋樹油與蓖麻油1:1之混合油生產生質柴油之應答曲面法直交表中加熱溫度的探討 93
4-5-4痲瘋樹油與蓖麻油1:1之混合油生產生質柴油之應答曲面法直交表中加熱時間的探討 94
4-5-5痲瘋樹油與蓖麻油1:1之混合油生產生質柴油之應答曲面法軸點增加實驗之探討 96
4-6加載氫氧化鈣之奈米級四氧化三鐵之回收及重複使用實驗 97
4-7加載氫氧化鈣之奈米級四氧化三鐵之傳統與微波加熱之比較 99
4-8比較油品對生質柴油產率影響 100
4-9 成本分析 101
4-10 利用非均相催化劑生產生質柴油之最佳產率比較 103
第五章 結論與建議 104
5-1 結論 104
5-2 建議 105
參考文獻 106
參考文獻 References
Agarwal, A.K., Das, L.M., “Biodiesel development and characterization for use as a fuel in compression ignition engines”, Journal of Engineering for Gas Turbines and Power 123, 2001, pp. 440 – 447
Al-Widyan, M.I., Tashtoush, G., Abu-Qudais, M., “Utilization of Ethyl Ester of Waste Vegetable Oils as Fuel in Diesel Engines”, Fuel Processing Technology 76, 2002, pp. 91 – 103.
Altanjargal, L. D. Tijing, I.-T. Im, C. S. Kim, “Simultaneous preparation of Ag/Fe3O4 core–shell nanocomposites with enhanced magnetic moment and strong antibacterial and catalytic properties”, Chemical Engineering Journal 2013, pp. 226- 243
Atadashi, I.M., Aroua, M.K., Aziz, A.A., “iodiesel separation and purification: a review”, ewable Energy 36, 2011, pp. 437 – 443.
Balat, M., “Potential alternatives to edible oils for biodiesel production – A review of current work”, Energy Conversion and Management 52, 2011, pp. 1479 – 1492.
Balat, M., Balat, H., “Progress in biodiesel processing”, Applied Energy 87, 2010, pp. 1815–1835.
Bankovi´c-Ili´c, I.B., Stamenkovi´c , O.S., Veljkovi´c, V.B., “Biodiesel production from non-edible plant oils”, Renewable and Sustainable Energy Reviews 16, 2012, pp.3621 – 3647.
Box G.E.P., Hunter,W.G. and Hunter J.S., “ Statistics for Experiments”, Wiely, New York, 1978, pp.374~433.
Chen, K.S., Lin, Y.C., Hsu, K.H., Wang, H.K., “Improving biodiesel yields from waste cooking oil by using sodium methoxide and a microwave heating system”, Energy 38, 2012, pp.151 – 156.
Demirbas, A., “Recent developments in biodiesel fuels”, International Journal of Green Energy 4, 2007, pp.15 – 26.
Demirbas. A., “Biodiesel from waste cooking oil via base-catalytic and supercritical methanol transesterification”, Energy Convers Manage 50, 2009, pp.923 – 927.
Dorado, M.P., Ballesteros, E., Lopez, F.J., Mittelbach, M., “Energy Optimization of alkali-catalyzed transesterification of Brassica Carinata oil for biodiesel production”, Fuels 18, 2004, pp.77 − 83.
Eevera, T., Rajendran, K., Saradha, S., “Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions”, Renewable Energy 34, 2009, pp.762–765.
European Biodiesel Board, “The EU biodiesel industry production by country statistics”, 2012.
Fukuda, H., Kondo, A., Noda, H., “Biodiesel fuel production by transesterification of oils”, Journal of Bioscience and Bioengineering 92, 2001, pp.405  416.
Galeno, G., Minutillo, M., Perna, A., “From waste to electricity through integrated plasmagaification / fuel cell (IPGFC) system”, International Journal of Hydrogen Energy 36, 2011, pp.1692 – 1701.
Gerhard Knothe et al., “Fuel Property of Biodiesel—Cetane Number” The Biodiesel Handbook AOCS Press, 2005.
Giovanni, V.D.G., Laurens, R., “The jatropha energy system:an integrated approach to decentralized and sustainable energy production at the village level”, Ingegneria Senza Frontiere, 2008.
Helwani, Z., Othman, M.R., Aziz, N., Fernando, W.J.N., Kim, J., “Technologies for production of biodiesel focusing on green catalytic techniques: a review”, Fuel Processing Technology 90, 2009, pp. 1502–1514.
Hu Shengyang, Guan Yanping, Wang Yun, Han Heyou, ”Nano-magnetic catalyst KF/CaO–Fe3O4 for biodiesel production”, Applied Energy, Vol. 88, Issue 8, 2011, pp. 2685–2690.
J.M. Dias, J.M. Araújo, J.F. Costa, M.C.M. Alvim-Ferraz, M.F. Almeida, “Biodiesel production from raw castor oil”, Energy,Vol. 53, 2013, pp.58-66.
Kafuku, G., Mbarawa, M., “Biodiesel production from Croton megalocarpus oil and its process optimization”, Fuel 89, 2010, pp.2556 – 2560.

Kaushik, N., Kumar, K.,Kumar, S.,Kaushik, N., Roy, S., “Genetic variability and divergence studies in seed traits and oil content of Jatropha (Jatropha curcas L.) accessions”, Biomass and Bioenergy 31, 2007, pp. 497–502.
Leadbeater, N.E., Marco, M., 2002. Org. Lett. 4, pp.2973.
Leung, D.Y.C., Guo, Y., “Transesterification of neat and used frying oil: optimization for biodiesel production”, Fuel Process Technol 87, 2006, pp.883 – 890.
Li Jie, Chen Changlun, Zhao Ying, Hu Jun, Shao Dadong, Wang Xiangke. “Synthesis of water-dispersible Fe3O4@β-cyclodextrin by plasma-induced grafting technique for pollutant treatment”, Chemical Engineering Journal 229,2013, pp.296–303
Lin Chia-Chang, Ho Jui-Min, Hsieh Hui-Ling. “Feasibility of using a rotating packed bed in preparing Fe3O4 nanoparticles”, Chemical Engineering Journal 203, 2012, pp.88–94
Lim, S., Teong, L.K., “Recent trends, opportunities and challenges of biodiesel in Malaysia: An overview”, Renewable and Sustainable Energy Reviews 14, 2010, pp. 938–954.
Liu Chang, Lv Pengmei, Yuan Zhenhong, Yan Fang, Luo Wen, ”The nanometer magnetic solid base catalyst for production of biodiesel”, Renewable Energy, Vol 35, Issue 7, 2010, pp. 1531–1536
Liu Hongfei, Jia Zhigang, Ji Shengfu, Zheng Yuanyuan, Li Ming, Yang Hao. “Synthesis of TiO2/SiO2@Fe3O4 magnetic microspheres and their properties of photocatalytic degradation dyestuff”, Catalysis Today, 175(1), 2011, pp.293–298
Ma, F., Hanna, M.A., “Biodiesel production: a review”, BioresourceTechnology 70, 1999, pp.1 – 15.
Madhu, A., Garima, C.S.P. Chaurasia, K.S., “Study of catalytic behavior of KOH as homogeneous and heterogeneous catalyst for biodiesel production”, Journal of the Taiwan Institute of Chemical Engineers 43, 2012, pp.89 – 94.
Montgomery, D.C., “Design and Analysis of Experiment, 3rd”, Wiley, New York, 1991.
Mostafa Feyzi, Asadollah Hassankhani, Hamid Reza Rafiee, “Preparation and characterization of Cs/Al/Fe3O4 nanocatalysts for biodiesel production”, Energy Conversion and Management. Vol 71, 2013, pp.62-68
Murugesan, A., Umarani, C., Chinnusamy, T.R., Krishnan, M., Subramanian, R., Neduzchezhain, N., “Production and analysis of bio-diesel from non-edible oils – a review”, Renewable and Sustainable Energy Reviews 13, 2009, pp. 825 – 834.
Ogunniyi, D. S. “Castor oil : A vital industrial raw material”, Bioresource Technology 97, 2006, pp.1086-1091.
Ong, H.C., Mahlia, T.M.I., Masjuki, H.H., “A review on energy scenario and sustainable energy in Malaysia”, Renewable and Sustainable Energy Reviews 15, 2011, pp.639 – 647.
Pandey, V.C., Singh, K., Singh, J.S., Kumar, A., Singh, B., Singh, R.P., “Jatropha curcas: A potential biofuel plant for sustainable environmental development”, Renewable and Sustainable Energy 16, 2012, pp.2870 – 2883.
Paseka, I., Electrochem J., 1995.Acta, 40,1633
Ramírez-Verduzco, L.F., Rodríguez-Rodríguez, J.E., Jaramillo-Jacob A.R., “Predicting cetane number, kinematic viscosity”, density and higher heating value of biodiesel from its fatty acid methyl ester composition. Fuel 91, 2012, pp.102 – 111.
Refaat, A.A., Sheltawy, S.T., Sadek, K.U., “Optimum reaction time, performance and exhaust emissions of biodiesel produced by microwave irradiation Int.”, J. Environ. Sci. Tech., 2008, pp.315-322.
Rodorico Giorgi, Luigi Dei, and Piero Bagliono, “A new mothod for consolidating wall paitings based on dispersion of lime in alcohol”, Study in Conservation. Vol.45, 2000, pp.8198-8203.
Roussy, G., Pearce, J.A., “Foundations and Industrial Applications of Microwave and Radiofrequency Fields”, Physical and Chemical Processes 10, 1995, pp.11-12.
Saifuddin, N., Chua, K.H., “Production of Ethyl Ester (Biodiesel) from used Frying Oil: Optimization of Transesterification Process using Microwave Irradiation”, Malaysian Journal of Chemistry, 2004, pp.1077-1082.
Scholz, V. and Silva da J. N. “Prospects and risks of the use of castor oil as a fuel”, biomass and bioenergy 32, 2008, pp.95-100
Schumacher, L.G., Borglet, S.C., Fosseen, D., Goetz, W., Hires, W.G., 1996. Heavy-Duty Engine Exhaust Emission Test Using Methyl Ester Soybean Oil/Diesel Fuel Blends. Bioresource Technology 57, 1996, pp. 31 – 36.
Schwab, A.W., Dykstra, G.J., Selke, E., Sorenson, S.C., Pryde, E.H., ”Diesel fuel from thermal decomposition of soybean oil”, Journal of the American Oil Chemists’ Society 65, 1988, pp.1781  1786.
Shakinaz, A.E.S., Ahmed, A.R., Shakinaz, T.E.S., “Production of biodiesel using the microwave technique”, Journal of Advanced Research 1, 2010, pp.309– 314.
Sharma, Y.C., Singh, B., “Development of biodiesel from karanja, a tree found in rural India”, Fuel 87, 2008, pp.1740  1742.
Sharma, Y.C., Singh, B., “Development of biodiesel: Current scenario. Renewable and Sustainable Energy Reviews”, 19, 2009, pp.1646 – 1651.
Shu, Q., Yang, B., Yuan, H., Qing, S., Zhu, G., “Synthesis of biodiesel from soybean oil and methanol catalyzed by zeolite beta modified with La3+”, Catalysis Communications 8, 2007, pp.2159  2165.
Song Yonghai, He Zhifang, Hou Haoqing, Wang Xiaolan, Wang Li. “Architecture of Fe3O4–graphene oxide nanocomposite and its application as a platform for amino acid biosensing”, Electrochimica Acta 71, 2012, pp.58–65.
Thostenson, E.T., Chou, T.W., “Microwave processing: fundamentals and applications”, Composites Part A: Applied Science and Manufacturing 30, 1999, pp.1055 – 1071
University of Idaho Department of Biological and Agricultural Engineering, Biodegradability of Biodiesel in the Aquatic Environment. “Development of Rapeseed Biodiesel for Use in High-speed Diesel Engines”, Progress Report, 1996, pp.96 – 116.
Wang, Y., Ou, S., Liu, P., Xue, F., Tang, S., “Comparison of two different processes to synthesize biodiesel by waste cooking oil”, Journal of Molecular Catalysis A: Chemical 252, 2006, pp.107 – 112.
Wang Jianxun, Chen Kungtung,Chen Chiingchang, “Biodiesel Production from Soybean Oil Catalyzed by K2SiO3/C”, Chinese Journal of Catalysis Vol 32, 2011, pp.1592-1596
Watanabe, Y., Nagao, T., Nishida, Y., Takagi, Y., Shimada, Y., “Enzymatic Production of Fatty Acid Methyl Esters by Hydrolysis of Acid Oil Followed by Esterification”, Journal of the American Oil Chemists Society 84, 2007, pp.1015 – 1021.
Yap, Y., Lee, H., Hussein, M.R.Y., “Calcium-based mixed oxide catalysts for methanolysis of Jatropha curcas oil to biodiesel”, Biomass and Bioenergy 35, 2011, pp. 827–834.
Zhang, S., Zu, Y.G., Fu, Y.J., Luo M., Zhang, D.Y., “Rapid microwave-assisted transesterification of yellow horn oil to biodieselusing a heteropolyacid solid catalyst”, Thomas Efferth cBioresource Technology 101, 2010, pp.931 – 936.
Zullaikah, S., Lai, C.C., Vali, S.R., Ju Y.H., “A Two-step Acid-catalyzed Process for the Production of Biodiesel from Rice Bran Oil”, Bioresource Technol 97, 2005, pp.1889 – 1896.
中油股份有限公司,「高級柴油物質安全資料表」,油品行銷事業部,2010。
呂錫民,「台灣低碳能源結構淺談」,能源報導30-33,2010。
廢棄物管理科,「廢食用油回收再利用」,嘉義縣環境保護局,2009。
李智傑,「酸性觸媒在生質柴油製程之研究」,國立成功大學化學工程學系,碩士論文,2008。
林福文,「微波機械系統設備與製程發展近況」,食品工業專題報導第40卷7期,2008。
經濟部能源局,「酒精汽油生質柴油及再生油品之生產輸入摻配銷售業務管理辦法」,石油管理法第三十八條第三項,2008。
經濟部能源局,「石油煉製業與輸入業銷售國內車用柴油摻配酯類之比率實施期程範圍及方式」,石油管理法第三十八條之一第二項,2010。
經濟部能源局,「新及再生能源」,能源產業技術白皮書,2012。
經濟部能源局,「國際油價情勢分析年報」,經濟部能源局年報,2013。
蔣本基、曾錦清、張怡怡、葉茂榮、蔡佳娟、陳郁文、傅耀宗,「電漿氣化及廢棄物轉化能源之技術調查與評估」,行政院原子委員會委託研究計劃,2005。
謝志誠,「生質柴油之品質與檢驗」,臺灣大學生物產業機電工程學系,2007。
趙國評、楊素幸,「淺談生質能」,林業研究專訊 14 No.3,2007。
鄭加佑,「氫氧混合氣注入柴油引擎燃燒室對節能與污染減量之研究」,國立中山大學環境工程研究所博士論文,2012。
陳介武,「生化柴油發展與趨勢」,黃豆之工業應用及環保,2000。
陳家鐘,「除草劑劑型簡介」,中華民國雜草學會會刊,第二十六卷,第二期,2005。
林成原,「利用非均相飛灰觸媒轉酯化製備生質柴油之燃料特性研究」,國立臺灣海洋大學輪機工程學系碩士論文,2012。
朱倩、郭志強、王宏偉、曹越、張宏斌。中國蓖麻產業現狀與發展建議。現代農業科技,2009,16:15-19。
徐國財、張立德,「奈米複合材料」,五南圖書出版股份有限公司,2004。
廖敏宏,磁性奈米載體在生物觸媒和生化分離之應用,國立成功大學化學工程學系博士論文,2002。
溫明鏡,氧化鐵雌性奈米粒子之合成與特性研究,國立中正大學碩士論文,2003。
顏雅侖,錳鋅鐵氧化物磁性流體之製備及分散研究,國立成功大學資源工程研究所碩士論文,2002。
孫中溪、郭淑雲,納米四氧化三鐵表面酸鹼性質研究,高等學校化學學報,第二十七卷,第七期,2006,第1351-1354 頁,中國。
鄭景軒,磁性奈米微粒之二氧化矽被覆技術之研究,國立成功大學機械工程學研究所碩士論文,2003。
徐光宏,磁性流變流體之製程研究,國立成功大學碩士論文,2002。
曾永寬,應用奈米氫氧化鈣強化古交趾陶胎體的合成與測試,國立雲林科技大學文化資產維護系碩士論文,2001。
賀孝雍,「微波的原理與應用」,科學月刊全文資料庫第292期,1994。
李明哲、林河木,藉助超臨界流體之超細顏料微粒的製備與分散研究,國立台灣科技大學化學工程系博士論文,2006。
曾憲偉、趙東林,2004,奈米 Fe3O4/聚苯胺複合粒子的製備及其磁性能研究,功能材料,2004,35:605-608
李玉華、侯貴華、束長小、王娟,水泥石中羥鈣石的X射線衍射定量分析,鹽城工學院學報,第16卷,第1期,2003,16-18
呂家榮,奈米金氣體感測材料之線性溶合能量關係模式與圖形辨識之研究,私立輔仁大學化學研究所碩士論文,2006。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code