Responsive image
博碩士論文 etd-0804114-152902 詳細資訊
Title page for etd-0804114-152902
論文名稱
Title
高反射與低電阻之銀銅鋁與銀鎂鋁結晶與非晶金屬薄膜研究
AgCuAl and AgMgAl crystalline and amorphous metallic thin films for high optical reflection and low electric resistivity applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
142
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-17
繳交日期
Date of Submission
2014-09-04
關鍵字
Keywords
金屬玻璃薄膜、反射率、低電阻、金屬玻璃、快速熱退火
metallic glass, reflectivity, metallic glass thin films, rapid thermal annealing (RTA), low resistivity
統計
Statistics
本論文已被瀏覽 5666 次,被下載 342
The thesis/dissertation has been browsed 5666 times, has been downloaded 342 times.
中文摘要
由文獻當中可知銀鎂鋁金屬玻璃薄膜在光電上擁有良好的性質,利用磁控濺鍍的方式可鍍出不同成分結晶與非晶的結構。
本實驗主要分為兩部分,第一部分在探討銀鎂鋁薄膜在電性上的優缺點,試圖去取代利用在連結器上的金,本實驗利用磁控濺鍍的方式鍍出不同成分、不同結構的銀鎂鋁薄膜,在不同的的條件下探討電阻與結構以及成分的關係,為了使結構更完美進而降低電阻率,試片製作完成後加入快速熱退火處理,實驗結果顯示在未經熱處理前,金屬玻璃薄膜的電阻率極高而結晶率較低,結晶越明顯則電阻率越低。經過熱處理後,結晶電阻率隨著退火溫度的提升而呈線性下降,在金屬玻璃薄膜方面,加熱至Tg點以上非晶質的結構將有明顯結晶的析出,而由於結晶較不受阻礙,電阻率會大幅度的下降甚至低於原有結晶結構退火過後的的薄膜。
第二部分是提升金屬玻璃的反射率,利用蒸鍍的方式鍍出非晶質的金屬玻璃,為了控制成分選用銀銅鋁系統,利用兩坩鍋其一為純銀另一為銅鋁合金來進行共蒸鍍,與利用濺鍍出來的銀銅鋁在同樣成分下探討反射率,分析主要著重在薄膜的結構、表面的形貌和粗糙度。
Abstract
This study is separated into two parts: high reflection and low resistivity.
The first part is focused on the low resistivity. The AgMgAl thin films in the form of metallic glasses or nanocrystaline phases are prepared by co-sputtering. The surface morphology, roughness, amorphous or crystalline atomic structure, grain size, and electric resistivity are systematically examined. The films are all about 1000 nm in thickness. Depending on the film compositions, the films can be fully amorphous or nanocrystalline, or a mixture of nanocrystalline phases in the amorphous matrix. For the fully amorphous films, the electric resistivity typically falls in the range from 750 to 1200 nm. In comparison, the nanocrystalline films possess the electric resistivity in the range from 150 to 500 nm. Thermal annealing at temperatures slightly below or above the glass transition temperature has been conducted to lower the sputtering defects and to relax the atomic structure. The thin films with initial amorphous structure and then crystallized during annealing are found to exhibit the lowest resistivity.
For the second part, the metallic glass shows the smooth curve of reflectivity in the visible region. This character is better than that of the crystalline alloys; the latter would exhibit high reflection in infrared region but a drop in invisible and UV region. Compared to the sputtered films, the quality of thin films deposited by evaporation is better and the reflectivity is higher. This study uses the e-beam assisted evaporation to fabricate the AgCuAl films. The surface morphology, roughness, amorphous or crystalline atomic structure, reflectivity, and electric resistivity are systematically examined.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 v
Abstract vi
Content vii
List of Tables x
List of Figures xi
Chapter 1 Background 1
1-1 Metallic glasses 1
1-2 Thin film metallic glasses (TFMGs) 2
1-3 Ag-Mg-Al thin films 2
1-4 Motivation 3
1-4-1 Low resistivity 4
1-4-2 High reflection 5
Chapter 2 Background and Literature Review 6
2-1 Characters of silver (Ag) 6
2-2 Characters of aluminum (Al) 7
2-3 Electric connector 8
2-4 Rapid Thermal Annealing (RTA) 9
2-5 Optical thin films and principles 10
2-5-1 Light reflection 11
2-5-2 Light refraction 12
2-5-3 Correlation of resistivity and reflectivity 13
2-6 Properties of thin film metallic glasses (TFMGs) 14
2-6-1 Deformation behavior of metallic glasses 14
2-6-2 Optical properties of metallic glasses 16
2-7 Sputtering 17
2-7-1 Introduction of sputtering 17
2-7-2 DC/RF sputtering processes 19
2-7-3 Growth of sputtered thin films 20
2-8 Evaporation 21
Chapter 3 Experimental methods 23
3-1 Materials 24
3-2 Sample preparation 24
3-2-1 Substrate preparation 24
3-2-2 Films preparation 25
3-3 Property measurements and analyses 26
3-3-1 X-ray diffractometer (XRD) 26
3-3-2 3D alpha-step profilometer (α-step) 26
3-3-3 Scanning electron microscopy (SEM) 27
3-3-4 Component analysis 27
3-3-5 n&κ analyzer 27
3-3-6 Four-point probe [51] 28
3-3-7 Atomic force microscope (AFM) 28
3-3-8 Nanoindenter 28
Chapter 4 Results and discussion 30
4-1 Low electric resistivity 31
4-1-1 Preface 31
4-1-2 XRD and composition analysis 32
4-1-3 Morphology analysis 34
4-1-4 Resistivity 36
4-1-5 Mechanical properties 39
4-1-6 Summary 39
4-2 High optical reflectivity 39
4-2-1 Preface 39
4-2-2 XRD and composition analysis 40
4-2-3 Morphology analysis 41
4-2-4 Optical and electric resistivity analysis 42
4-2-5 Summary 44
Chapter 5 Conclusion 45
References 47
Tables 51
Figures 60
參考文獻 References
[1] http://www.liquidmetal.com.
[2] W. Klement, R.H. Willens, P. Duwez, Nature, 187 (1960) 869-870.
[3] A.C. Lund, C.A. Schuh, Journal of Applied Physics, 95 (2004) 4815-4822.
[4] A. Inoue, Materials Transactions, JIM, 36 (1995) 866-875.
[5] A. Inoue, Materials Science and Engineering A, A226-228 (1997) 357-363.
[6] A. Inoue, A. Takeuchi, T. Zhang, Metallurgical and Materials Transactions A, 29 (1998) 1779-1793.
[7] P. J. Hsieh, PhD Thesis, Nanocrystallization and Amorphization of Zr Base Alloys during Accumulative Roll Bonding, National Sun Yat-Sen University, Kaohsiung, Taiwan, (2004)
[8] T. Masumoto and R. Maddin, Mater. Sci. Eng., 19 (1975) 1-24
[9] R. B. Schwarz, Mater. Sci. Eng., 97 (1988) 71-78
[10] T. T. Hu, J. H. Hsu, J. C. Huang, S. Y. Kuan, C. J. Lee, T. G. Nieh, Appl. Phys. Lett., 101 (2012) 011902.
[11] R.T. Poole, Physics Education, 18, (1983) 280-283
[12] 李正中, 薄膜光學與鍍膜技術, 藝軒, 台北, (2006).
[13] W.H. Wang, J.H. Hsu, J.C. Huang, Appl. Phys. Lett., 103 (2013) 161906.
[14] Refractive Index Database, http://refractiveindex.info.
[15] G. Hass, Journal of the Optical Society of America, 45 (1955) 945-952.
[16] Y.H. Liu, T. Fujita, A. Hirata, S. Li, H.W. Liu, W. Zhang, A. Inoue, M.W. Chen, Intermetallics, 21, 105-114 (2012).
[17] Wu Tang, Kewei Xu, Ping Wang, Xian Li, Microelectronic Engineering, 66, (2003) 445-450.
[18] A.Takeuchi, A. Inoue, Materials Transactions, 46, 12 (2005) 2817-2829.
[19] C. Charton, M. Fahland, Surface and Coatings Technology, 174-175, 181-186 (2003).
[20] C. Charton, M. Fahland, Surface and Coatings Technology, 142–144,175-180 (2001).
[21] M. Antler, Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, 8 (1985) 87-104.
[22] T. Manninen, K. Kanervo, A. Revuelta, J. Larkiola, A.S. Korhonen, Materials Science and Engineering: A, 460–461A (2007) 633-637.
[23] S.J. Krumbein, Parts, Materials and Packaging, IEEE Transactions on, 5 (1969) 89-98.
[24] Y. Okinaka, M. Hoshino, Gold Bull, 31 (1998) 3-13.
[25] C.L. Wellard, Resistance and Resistors, McGraw-Hill, 1960.
[26] J.H. Choi, D.N. Lee, Materials Science and Engineering: A, 458A (2007) 295-302.
[27] M. Antler, M. Drozdowicz, C.A. Haque, Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, 4 (1981) 482-492.
[28] E. Bock, J. Whitley, Proc. of the 20th Annual Holm Seminar on Electric Contacts, 1974, pp. 128-138.
[29] Jong Hoon Kim, Kyung Ah Jeon, Gun Hee Kim, and Sang Yeol Lee, Applied Surface Science 252 (2006) 4834–4837.
[30] Jong Hoon Kim, Byung Du Ahn, Choong Hee Lee, Kyung Ah Jeon, Hong Seong Kang, and Sang Yeol Lee, Journal of Applied Physice 100, (2006) 113515.
[31] B. Todorovic et al, Thin Solid Films 300 (1997) 272-277
[32] D.J. Struik, Willebrord Snell, American Council of Learned Societies, New York, (1975).
[33] A. Inoue, K. Amiya, I. Yoshii, H.M. Kimura, T. Masumoto, Materials Transactions, JIM, 35, (1994) 485-488.
[34] H. Lamb, Philosophical Transactions of the Royal Society of London 174, (1883) 519-526.
[35] A.K. Azad, W. Zhang, Optics Letters, 30, (2005) 2945-2947.
[36] U. Mizutani, Materials Science and Engineering, 99, (1988) 165-173.
[37] F. Spaepen, ActaMetallurgica, 25, (1977) 407-415.
[38] C.A. Schuh, T.C. Hufnagel, U. Ramamurty, ActaMaterialia,55, (2007) 4067-4109.
[39] B. Yang, M.L. Morrison, P.K. Liaw, R.A. Buchanan, G. Wang, Applied Physics Letters,86, (2005) 141904.
[40] C.C. Hay, C.P. Kim, W.L. Johnson, Physical Review Letters, 84, (2000) 2901-2904.
[41] Z.F. Zhang, J. Eckert, L. Schultz, ActaMaterialia, 51, (2003) 1167-1179.
[42] Y. Liu, S. Hata, K Wata, A. Shimokohbe. Jpn. J. Appl. Phys. 40, (2001) 5382-5388.
[43] H.E. Bennett, J.O. Porteus, Journal of the Optical Society of America 51, (1961) 123-129.
[44] Y.H. Wang, S.C. Her, C.N. Hsiao, H.P. Chen, Journal of Science and Engineering Technology, 4, (2008) 81-88.
[45] D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, (1998)
[46] K. Seshan, Handbook of Thin-Film Deposition Processes and Techniques, Noyes Publications, Park Ridge, N.J., USA (1988).
[47] W. Zou, Synthesis of Giant Magnetoresistive Multilayers, University of Virginia, (2001).
[48] K. Wasa and S. Hayakawa, Handbook of Sputter Deposition Technology, (1992).
[49] http://www.powerstream.com/vapor-pressure.htm.
[50] F.G. Tseng, Advance Micro System Fabrication and Lab, 6 (2001).
[51] http://www.mast-tech.com.tw/Resistivity Measurement.pdf.
[52] D.K. Schroder, Semiconductor Material and Device Characterization, Wiley, 2006.
[53] A. L. Patterson, Phys. Rev. 56, (1939) 978.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code