Responsive image
博碩士論文 etd-0804114-154029 詳細資訊
Title page for etd-0804114-154029
論文名稱
Title
利用磨擦攪拌製程探討添加鎂對超細鋁鋅鎂合金機械性質的影響
Mg effect on the mechanical property of ultrafine grained Al-Zn-Mg alloy by friction stir processing
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-08-19
繳交日期
Date of Submission
2014-09-04
關鍵字
Keywords
m值(應變速率敏感係數)、細晶強化作用、固溶強化作用、摩擦攪拌製程、Al-5Zn-1Mg
Strain rate sensitivity, Hall-Petch equation, solid solution strengthening, friction stir processing, Al-5Zn-1Mg
統計
Statistics
本論文已被瀏覽 5653 次,被下載 51
The thesis/dissertation has been browsed 5653 times, has been downloaded 51 times.
中文摘要
本實驗藉由摩擦攪拌製程研究Al-5Zn-1Mg及Al-5Zn合金的機械性質,探討添加1wt%鎂前後,不同晶粒尺寸及拉伸速率所呈現的機械強度和塑性變形機制為何。
在不同工具頭尺寸及轉速下,Al-5Zn-1Mg及Al-5Zn分別製作出三種平均晶粒尺寸不同樣本,Al-5Zn-1Mg為2.47 μm、1.24 μm及0.91 μm,而Al-5Zn則是1.50 μm、1.00 μm及0.50 μm。前述樣本分別以3種不同拉伸速率(10-3 s-1、10-4 s-1及10-5 s-1)進行拉伸試驗,總計得到18組的機械性質實驗數據。
本研究中可以很清楚看到添加1 wt%鎂後,降伏強度、最大拉伸強度及均勻延展性皆明顯提升。此外藉由應變速率敏感係數等數據分析顯示,Al-5Zn所展現的反Hall-Petch關係趨勢在Al-5Zn-1Mg皆看不到,暗示了鎂的添加降低了鋅的效應。
Abstract
Friction stir processing method was employed to study mechanical properties of Al-5Zn-1Mg and Al-5Zn alloy with various parameters including grain size and tensile strain rate.
Average grain size for Al-5Zn-1Mg alloy are 2.47 μm, 1.24 μm, and 0.91 μm. Each sample was pulled in tension at strain rate of 10-3 s-1, 10-4 s-1, and 10-5 s-1.
In this study, we found that 1wt% magnesium to Al-5Zn alloy can improve yield strength, Ultimate tensile strength and uniform elongation. Also strain rate sensitivity coefficient analysis showed that the inverse Hall-Petch relationship trends exhibited in Al-5Zn did not discovered in Al-5Zn-1Mg. It suggests that addition of magnesium to reduce the effect of zinc.
目次 Table of Contents
第 一 章 前言........................................................................................1
1.1 研究背景說明...........................................................................1
1.2 研究動機與目的.......................................................................3
第 二 章 文獻回顧 ..............................................................................4
2.1 摩擦攪拌製程用於製作超細晶材料.......................................4
2.1.1 摩擦攪拌製程..................................................................4
2.1.2 摩擦攪拌製程晶粒尺寸..................................................5
2.2 金屬基複合材料的機械性質...................................................5
2.2.1 加工硬化..........................................................................5
2.2.2 固溶強化..........................................................................6
2.2.3 細晶強化..........................................................................6
2.2.4 Hall-Petch曲線偏差相關理論….....................................7
2.2.5 應變速率敏感係數..........................................................9
2.3 Al-Zn合金的基本性質.........................................................10
第 三 章 實驗方法 ............................................................................11
3.1 實驗材料成分與製備.............................................................11
3.1.1 鋁粉、鋅粉與鎂粉..........................................................11
3.1.2 實驗塊材製作................................................................11
3.2 摩擦攪拌製程.........................................................................12
3.2.1 工具頭與夾具................................................................12
3.2.2 摩擦攪拌製程機器簡介................................................12
3.2.3 試片代號........................................................................13
3.2.4 摩擦攪拌製程步驟........................................................13
3.3 微觀組織分析.........................................................................14
3.3.1 掃描式電子顯微鏡分析試片表面形貌及成份............14
3.3.2 X光繞射分析 ..............................................................14
3.3.3 電子微探儀(EPMA)定量分析.......................................15
3.3.4 背向散射電子繞射(EBSD)分析....................................15
3.4 機械性質測量.........................................................................16
3.4.1 拉伸試驗........................................................................16
第 四 章 實驗結果與討論..................................................................17
4.1 晶粒大小.................................................................................17
4.2 表面形貌及成分分析.............................................................18
4.3 X光繞射分析.........................................................................19
4.4 電子微探儀定量分析結果.....................................................19
4.5 拉伸性質量測.........................................................................20
4.5.1 應力應變曲線................................................................20
4.6 m值變動與拉伸速率及晶粒尺寸關係..................................22
第 五 章 結論......................................................................................23
參考文獻..................................................................................................24
表..............................................................................................................28
圖..............................................................................................................36

表 目 錄
表 2-1 不同摩擦攪拌銲接/製程下攪拌區內晶粒的變化的比較。.....................28
表 2-2 超細晶產製方式的比較。[19]....................................................................30
表 3-1 工具頭規格。...............................................................................................31
表 4-1 FSP 參數與晶粒粒徑大小關係。..............................................................32
表 4-2 EPMA 試片定量分析表。(Al-5Zn數據由[16]提供)................................33
表 4-3 不同試片拉伸曲線中不同晶粒大小及拉伸速度其機械性質。(Al-5Zn數據由[16]提供) ............................................................................................34
表 4-4 Al-5Zn及Al-5Zn-1Mg拉伸曲線中不同拉伸速率其m值。(Al-5Zn數據由[16]提供).....................................................................................................35
表 4-5 633-700 rpm試片之EDS點分析成分表。..........................................35

圖 目 錄
圖 2-1 Al-Zn 合金之二元平衡相圖。...................................................................36
圖 2-2 較強交互滑移發生於晶界部分圖示。.......................................................36
圖 2-3 多晶材料塑性變形的順序圖示。(a)局部塑性變形(microyielding)開始產生於晶界處,於該處發生加工硬化現象; (b)差排逐漸堆積於晶界處; (c)表示該作用加劇,開始強化試片整體強度; (d)應力於差排處集中; (e)差排堆積於晶界附近,使該區域應力上升; (f)應力上升擴大至整體晶粒,整體塑性變形因而發生.......................................................................37
圖 2-4 多晶材料中晶質部分與晶界(grain boundary,the triple line and the quadruplenode)所佔體積百分比與晶粒尺寸之關係圖。晶界厚度假設為1 nm[30]。.......................................................................................................38
圖 2-5 Ashby–Verall 機制:晶界滑移發生時相伴發生之臨近晶粒之間的原子塑性流動圖示,(a)原本相互緊靠的四個晶粒; (b)晶粒端點彼此產生輻合現象; (c)晶粒之間相對位置產生變化[34]。.........................................39
圖 2-6 晶界滑移示意圖。(a)晶界滑移在多晶系統中的圖示; (b)晶界滑移的途徑;(c)Raj and Ashby 所提出之理想晶界形狀(符合sin 函數) 及(d)由於拉伸量增加導致波高(h)減少[5]。.............................................................40
圖 2-7 銅金屬在不同拉伸速率下之Hall-Petch 關係圖,應力數值對應於為伸長率為0.2....................................................................................................41
圖 3-1 粉末成型機。...............................................................................................42
圖 3-2 粉末成型使用之夾具。...............................................................................42
圖 3-3 摩擦攪拌製程工具頭。...............................................................................43
圖 3-4 摩擦攪拌製程使用之夾具。.......................................................................43
圖 3-5 由銑床改裝之摩擦攪拌製程機。...............................................................44
圖 3-6 面板控制鈕號說明。...................................................................................44
圖 3-7 拉伸試片規格。...........................................................................................45
圖 3-8 實驗步驟流程。...........................................................................................45
圖 4-1 1666-1500rpm試片攪拌之後之EBSD晶粒尺寸分佈圖,平均尺寸為2.47± 1.83μm。.....................................................................................................46
圖 4-2 833-700rpm試片攪拌之後之EBSD晶粒尺寸分佈圖,平均尺寸為1.24 ± 0.52μm。.....................................................................................................46
圖 4-3 633-700rpm試片攪拌之後之EBSD晶粒尺寸分佈圖,平均尺寸為0.91 ± 0.48μm。.....................................................................................................47
圖 4-4 1666-1500rpm試片攪拌之後之5000倍SEM影像圖。由上至下分別為(a)SEI影像;(b)BEI影像。............................................................................48
圖 4-5 833-700rpm試片攪拌之後之5000倍SEM影像圖。由上至下分別為(a)SEI影像;(b)BEI影像。......................................................................................49
圖 4-6 633-700rpm試片攪拌之後之5000倍SEM影像圖。由上至下分別為(a)SEI影像;(b)BEI影像。......................................................................................50
圖 4-7 633-700rpm試片經ion-polisher之5000倍SEM影像圖。由上至下分別為(a)SEI影像;(b)BEI影像。........................................................................51
圖 4-8 633-700rpm試片之EDS點分析5000倍SEM影像示意圖。.................52
圖 4-9 833-1500rpm試片經ion-polisher之10000倍SEM影像圖。可以明顯看出細小亮點的析出物分佈在grain boundary上。由上至下分別為(a)SEI影像;(b)BEI影像。......................................................................................53
圖 4-10 (a)不同製程的Al-5Zn-1Mg鋁合金經FSP前後之X光繞射圖;(b)鋁合金經FSP製程後,在高角度下之Al(420)繞射峰偏移量。.............................54
圖 4-11 (a)不同製程的Al-5Zn-1Mg鋁合金經FSP後之X光繞射圖;(b) 7075鋁合金的η(MgZn2)繞射波峰圖,經對比確認後本實驗試片並無出現η(MgZn2)的繞射波峰。...............................................................................................55
圖 4-12 晶粒尺寸為 (a)0.91μm、(b) 1.24μm、(c) 2.47μm的Al-5Zn-1Mg試片之三種拉伸速率的工程應力對工程應變曲線圖。...........................................56
圖 4-13 拉伸速率為 (a)10-3s-1、(b)10-4s-1、(b)10-5s-1的Al-5Zn-1Mg試片之三種晶粒尺寸的工程應力對工程應變曲線圖。...................................................57
圖 4-14 晶粒尺寸為 (a) 0.5μm、(b) 1.0μm、(c) 1.5μm的Al-5Zn試片之三種拉伸速率的工程應力對工程應變曲線圖。[16]...........................................58
圖 4-15 拉伸速率為 (a)10-3s-1、(b)10-4s-1、(c)10-5s-1的Al-5Zn試片之三種晶粒尺寸的工程應力對工程應變曲線圖。[16]...................................................59
圖 4-16 不同鎂含量在不同晶粒大小下的降伏應力及抗拉強度,應變速率1x10-3s-1。(Al-5Zn數據由[16]所提供)........................................................60
圖 4-17 不同鎂含量在不同晶粒大小下的均勻延展性及總伸長量,應變速率1x10-3s-1。(Al-5Zn數據由[16]所提供)........................................................60
圖 4-18 不同鎂含量在不同晶粒大小下的降伏應力及抗拉強度,應變速率1x10-4s-1。(Al-5Zn數據由[16]所提供)........................................................61
圖 4-19 不同鎂含量在不同晶粒大小下的均勻延展性及總伸長量,應變速率1x10-4s-1。(Al-5Zn數據由[16]所提供)........................................................61
圖 4-20 不同鎂含量在不同晶粒大小下的降伏應力及抗拉強度,應變速率1x10-5s-1。(Al-5Zn數據由[16]所提供)........................................................62
圖 4-21 不同鎂含量在不同晶粒大小下的均勻延展性及總伸長量,應變速率1x10-5s-1。(Al-5Zn數據由[16]所提供)........................................................62
參考文獻 References
參考文獻
1. Birringer R., "Nanocrystalline materials", Materials Science and Engineering
A: Structural Materials: Properties, Microstructure and Processing, 117(1989)
33-43.
2. Arzt E., "Size effects in materials due to microstructural and dimensional
constraints: A comparative review", Acta Materialia, 46(1998) 5611-5626.
3. Gleiter H., "Nanostructured materials: basic concepts and microstructure",
Acta Materialia, 48(2000) 1-29.
4. Kumar K. S., Van Swygenhoven H. and Suresh S., "Mechanical behavior of
nanocrystalline metals and alloys", Acta Materialia, 51(2003) 5743-5774.
5. Meyers M. A., Mishra A. and Benson D. J., "Mechanical properties of
nanocrystalline Materials", Progress in Materials Science, 51(2006) 427–556.
6. Lee S., Park H. J. Y. and Yoon C., "A study of hydrostatic extrusion as a
consolidation process for fabricating ultrafine-grained bulk Al–Mg alloy",
Journal of Materials Processing Technology, 191(2007) 396-399.
7. Azushima A., Kopp R. and Korhonen A., "Severe plastic deformation (SPD)
processes for metals", CIRP Annals - Manufacturing Technology, 57(2008)
716-735.
8. Orlov D., Todaka Y. and Umemoto M., "Role of strain reversal in grain
refinement by severe plastic deformation", Materials Science and Engineering
A, 499(2009) 427-433.
9. Rosen A., Chokshi A. H., Karch J., Gleiter H., "On the validity of the
Hall-Petch relationship in nanocrystalline materials", Scripta metallurgica,
23(1989) 1679-1684.
10. Masamura R. A., Hazzledine P. M., Liaw P. K. and Lavernia E. J., "Yield stress
of fine grained materials", Acta Materialia, 46(1998) 4527-4534.
11. Conrad H. and Narayan J., "On the grain size softening in nanocrystalline
Materials", Scripta Materialia, 42(2000) 1025-1030.
12. Van Swygenhoven H., Spaczer M. and Caro A., "Microscopic description of
plasticity in computer generated metallic nanophase samples: a comparison
between Cu and Ni", Acta Materialia, 47(1999) 3117-3126.
13. Takeuchi S., "The mechanism of the inverse Hall-Petch relation in
nanocrystals", Scripta Materialia, 44(2001) 1483-1487.
14. Yamakov V., Wolf D., Salazar M., Phillpot S. R. and Gleiter H., "Deformation
mechanism crossover and mechanical behavior in nanocrystalline",
Philosophical Magazine Letters, 83(2003) 385-393.
15. Yamakov V., Wolf D., Phillpot S. R., Mukherjee A. k. and Gleiter H.,
"Deformation-mechanism map for nanocrystalline metals by molecular
dynamics simulation", Nature Materials, 3(2004) 43-47.
16. Scattergood R. O. and Koch C. C., "A modified-model for Hall-Petch
behavior in nanocrystalline materials", Scripta Metallurgica, 27(1992)
1195-1200.
17. Höppel H., W. May J., Göken M., In: Horita Z., Langdon T. G., editors
Report. Proceeding of the 3rd internation conference on nanomaterials bysevere
plastic deformation, Nanospd 3, Fokuoka, Japan, 2005.
18. Höppel H., W. May J., Göken M., "Enhanced strength and ductility in
ultrafine-grained aluminium produced by accumulative roll bonding",
Advaced Engineering Materials, 6(2004) 781-784.
19. Yan H.K., "The influence of Zn on the mechanical property of Al-Zn alloy",
Master thesis, Sun Yat-Sen University, 2012.
20. Wang Y.Y., "Mg effect on mechanical properties of ultrafine grained Al-Mg
alloy produced by friction stir processing", Master thesis, Sun Yat-Sen
University, 2010.
21. Mishra R. S. and Mahoney M. W., "Friction stir processing: A new grain
refinement technique to achieve high strain rate superplasticity in
commercial alloys", Materials Science Forum, 357-359(2001) 507-514.
22. Mishra R. S and Ma Z. Y., "Friction stir welding and processin", Materials
Science & Engineering R-Reports, 50(2005) 1-78.
23. Chen Y. L., "Studies of grain evolution in 1050 aluminum alloy during
friction stir process", Master thesis, National Sun Yat-Sen University, 2006.
24. Thompson A. W., "Work hardening in tension and fatigue", In: New
York .American Institute of Mining, Metallurgical and Petroleum Engineers,
1977.
25. Margolin H., "Polycrystalline yielding—perspectives on its onset", Acta
Materialia, 46(1998) 6305-6309.
26. Gray HI G. T., Lowe T. C., Cady C. M., Valiev R. Z. and Aleksandrov I.
V.,"influence of strain rate & temperature on the Mechanical response of
ultrafine-grained cu,ni,and Al-4Cu-0.5Zr", NanoStmaured Materials,
9(1997) 477-480.
27. Sun S., Adams B. L., Shet C., Saigal S. and King W., "Mesoscale investigation
of the deformation field of an aluminum bicrystal", Scripta Materialia,
39(1998). 501-508.
28. Benson D. J., Hsueh-Hung Fu and Meyers M. A., "On the effect of grain sizeon
yield stress: extension into nanocrystalline domain", Materials Science and
Engineering A, 319-321(2001) 854-861.
29. Argon, A., “Strengthening Mechanisms in Crystal Plasticity", 2007: Oxford
University Press.
30. Gleiter H., "On the structure of grain boundaries in metals", NATO
Conference Series, (Series) 6: Materials Science, 5(1983) 433-464.
31. Sandersa P.G., Rittnera M., Kiedaischa E., Weertmana J.R., Kungb H. and
LuY.C., "Creep of nanocrystalline Cu, Pd, and Al-Zr ", Nanostructured
Materials, 9(1997) 433-440.
32. Van Swygenhoven H. and Derlet P. M., "Grain-boundary sliding in
nanocrystalline fcc metals", PHYSICAL REVIEW B, 64(2001) 1-9.
33. Raj R. and Ashby M. F., "On grain boundary sliding and diffusional creep",
Metallurgical Transactions, 2(1971) 1113-1127.
34. Kin H. S., Estrin Y. and Bush M. B., "Plastic deformation behaviour
offine-grained materials", Acta Materialia, 48(2000) 493-504.
35. Kim H. S. and Bush. M. B., "The effects of grain size and porosity on the
elastic modulus of nanocrystalline materials", NanoStructured Materials,
11(1999) 361-367.
36. Höppel H., W. May J., Göken M., "Strain rate sensitivity of ultrafine-grained
aluminium processed by severe plastic deformation", Scripta Materialia,
53(2005) 189-194.
37. Loffler H., "Structure and Structure Development of Al-Zn Alloys",
1995: Wiley-VCH.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code