Responsive image
博碩士論文 etd-0804115-151536 詳細資訊
Title page for etd-0804115-151536
論文名稱
Title
應用可移動式模具於管材大鼓脹液壓成形之研究
Study of Large-expansion-ratio Tube Hydroforming Processes with Movable Dies
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2015-07-09
繳交日期
Date of Submission
2015-09-04
關鍵字
Keywords
大鼓脹、有限元素分析、軸偏心、可移動式模具、液壓成形
finite element model, different central axis, tube hydroforming, movable die, large expantion ratio
統計
Statistics
本論文已被瀏覽 5679 次,被下載 610
The thesis/dissertation has been browsed 5679 times, has been downloaded 610 times.
中文摘要
液壓成形技術為ㄧ相對新穎的結構輕量化製造技術,隨者科技發展,社會大眾需要質量更輕且更堅固的製造技術。為了可以應付日新月異的製造需求,提出應用可移動式模具於大鼓脹液壓成形技術,讓液壓成形技術可以製造更多元的產品。本研究成品為ㄧ具有軸偏心、大鼓脹與塑性變形區空間大等特徵,透過可移動式模具的應用,可以讓成品成形後有更均一的厚度,製程中更容易避免管件常見的缺陷像是挫屈、皺摺與破裂。本研究使用Dynaform與LS-DYNA進行有限元素分析,模擬數據使用低碳鋼JIS G3141管材探討各參數,包括次推桿衝程、主推桿衝程、移動模具外型與內壓力路徑的影響性,以上數值主要以運算與模擬驗證決定參數範圍。設計對應機構,並製作複合式液壓缸機台進行實驗,成品實驗計畫使用低碳鋼與不鏽鋼鋼管進行實驗驗證。
Abstract
Tube hydroforming is a relatively new approach to manufacture light weight metal structures. As the manufacturing technology became advanced, demands of lighter and stronger metal structures are also increasing.The technique of large expation-ratio Tube Hydroforming with Movable Dies is designed for the demand. The product has features of large expansion ratio and different central axis. Traditional tube hydroforming is difficult to achieve this complicated metal product. Tube hydroforming with movable dies is proposed to enhance the capacity of tube hydroforming technology. With movable die design, product with more uniform thickness can be obtained, and the forming pressure becomes lower than that needed in tube hydroforming without movable dies. Finite element code LS-DYNA and DYNAFORM is used to analyze the plastic flow pattern of the tube. The loading paths of internal pressure, axial punches and movable dies for obtaining a sound product are determined by an adaptive simulation algorithm and the basic geometric analysis. The Compound Hydraulic Cylinders is designed for the experiment to verify our simulation. The low-carbon steel and stanless steel tubes are planned to be applied in the experiment.
目次 Table of Contents
學位論文審定書 i
誌謝 ii
摘要 iii
圖目錄 viii
表目錄 xiii
符號表 xiv

第一章 緒論 1
1-1前言 1
1-2管材液壓成形技術簡介 3
1-2-1管件液壓成形基本理論 4
1-2-2液壓成形常見缺陷 7
1-2-3管件液壓成形技術之應用與優缺點 8
1-2-4可移動模具於管件液壓成形之應用介紹 10
1-3文獻回顧 10
1-3-1 支管脹形相關文獻 10
1-3-2 移動模具相關文獻 11
1-3-3 液壓成形參數研究相關文獻 11
1-3-4 液壓成形結合不同零件 13
1-4研究動機與目的 13
1-5論文架構 14

第二章 模具設計與有限元素軟體介紹 15
2-1 可移動式液壓成形製程設計概念 15
2-1-1對稱式可移動模具液壓成形 15
2-1-2非對稱式彎管可移動模具液壓成形 17
2-1-3非對稱式可移動拘束魔句液壓成形 18
2-2 管材液壓成形有限元素軟體介紹 19
2-2-1板材之成形極限分析 19
2-2-2 Ls-Dyna 求解核心介紹 20
2-2-3 Dynaform 軟體介紹 21
2-2-4 薄殼元素 22
2-2-5 有限元素軟體使用步驟 22

第三章 大鼓脹液壓成形模式建立 24
3-1 Dynaform 有限元素模式建立 24
3-1-1 假設條件 25
3-1-2 JIS G3141 SPCE材料介紹 25
3-1-3 幾何分析 27
3-1-4 參數設定 30
3-2 大鼓脹管件液壓成形模擬結果 32
3-2-1 彎管預成形與彎管後對液壓成形的影響 33
3-2-2 主推桿與次推桿衝程量計算 37
3-2-3 內壓力路徑的設定方式 39
3-2-4 次推桿衝程對成品影響 46
3-2-5 主推桿衝程對成品影響 50
3-2-6 移動模具外形的設計與對成品的影響 55
3-2-7 表面摩擦係數對成品的影響 56
3-2-8 JIS G3141 SPCE管材大鼓脹模擬參數 59

第四章 機台介紹與實驗流程 63
4-1 機台簡介 63
4-1-1複合式液壓缸設計要點 63
4-1-2 複合式液壓缸零件介紹與機台使用限制 68
4-2 STKM11A材料參數之獲得 70
4-3 實驗流程 73
4-4 實驗結果 76
4-4-1第一階段實驗結果 76
4-4-2第二階段實驗結果 80
4-4-3模擬數據結果與實驗結果之比較 83

第五章 結論 88
5-1 結論 88
5-2未來展望 89
參考文獻 90
參考文獻 References
【1】L.H. Lang,, Z.R. Wang, D.C. Kang, S.J. Yuan , S.H. Zhang , J. Danckert , K.B. Nielsen, “Hydroforming highlights: sheet hydroforming and tube hydroforming”, Journal of Materials Processing Technology 151 (2004) p.165–177.
【2】S. Jirathearanat, C. Hartl, T. Altan, “Hydorforming of Y-shapes-products and process design using FEA simulation and experiments”, Journal of Materials Processing Technology, Volume 146, 2004, p.124-129.
【3】D.J. Kim, “Formability Evaluation of Titanium Alloy (Ti-3Al-2.5V)in Cold Tube Hydroforming”, 6th International Conference on Tube Hydroforming, 2013, p.215-220.
【4】E. Chu, Yu Xu, “Hydroforming of aluminum extrusion tubes for automotive applications. Part I: buckling, wrinkling andbursting analyses of aluminum tubes”, International Journal of Mechanical Sciences 46 (2004) p.263-283.
【5】科技部:http://www.most.gov.tw/ctpda.aspx?xItem=8319&ctNode=76&mp=8
【6】陳敏滄 可移動式模具於管材液壓成型之應用 2013國立中山大學機械與機電工程學系
【7】M .Wada, “Development of structural joint with right-angeled two branches by hydroforming, Steel research laboratory”, 5th International Conference on Tube Hydroforming, 2011, p.62-65.
【8】A. Shirayori, M. Narazaki, “Cross-shaped Tube Hydroforming of Small Diameter Tubes”, 4TH International Conference on Tube Hydroforming, 2009, p.121-126.
【9】K.Manabe, D. Kobayashi, X. Chen, “Experimental Validation of Fuzzy Process Control of Y-shape Hydroforming for AZ61 Magnesium Alloy Tube”, 6TH International Conference on Tube Hydroforming, 2013, p.199-203.
【10】K. Sato, I. HIROSHIGE, K. HIRAMATSU, “Tube Hydroorming With Movable Dies”, 4TH International Conference on Tube Hydroforming, 2009, p.246-251.
【11】M . Wada, “Weight Reduction of Axle-housings Using High-expansion-ratio Hydroforming Technology”, 6th international conference on tube hydroforming, 2013, p.62-65.
【12】M. Bakhshi, “Study on the effect of Process Parameters on Existed defects in Producing a Cylindrical Stepped Tube in a New hydroforming Die”, The International Conference on Advances in Materials and Processing Technology, 2009, Paper No 40.
【13】Q.Zhang, C.D. Wu, S.D.Zhao “Numerical Simulation on Hydroforming Tube-like Eccentric Shaft Part by Using Movable Die”, 5TH International Conference on Tube Hydroforming, 2011, p.149-152.
【14】G.S.CHUNG, Y.H. MOON, “Experimental investigation of friction coefficient in tube hydroforming”, Transactions of Nonferrous Metals Society of China Volume 21, 2011, p.194-198.
【15】S.J Yuan, X.S Wang, G. Liu, “Control and Use of Wrinkles in Tube Hydroforming”. Journal of Materials Processing Technology, 2007, p.6-12.
【16】J. Park and Y. Kim, “Analysis of forming limit in tube hydroforming process”, Department of mechanical Engineering, Kyungpook National University, Deagu, Korea, 4th International Conference on Tube hydroforming 2009, p.79-88.
【17】S. Fuchizawa, “Deformation of Metal Tubes Under Hydrostatic Bulge Forming With Closed Die,” Advanced Technology of Plasticity, Vol.3, 1993, p.1543-1548.
【18】S. Fuchizawa and M Narazaki, “Analysis of Bulge Deformation of Thin Tube with Cylinderical Die,” J. Japan Society Technology Plasticity, Vol.30, 1989, p.116-122.
【19】J. Tirosh, A. Neuberger and A. Shirizly, “On Tube Expansion By Internal Fluid Pressure with Additional Compressive Stress,” Int. J. Mech. Sci., Vol.38, 1996, p.839-851.
【20】S. Fuchizawa, A. Shirayori, H. Yamamoto, and M. Narazaki, “Bulge forming of thin copper tube by axial compression and internal pressure,” Journal of JSTP , Vol.35, No.398, 1994, p.251.
【21】S. Fuchizawa, M. Narazaki, and A. Shirayori, “Bulge forming of aluminum alloy tubes by internal pressure and axial compression,” Advanced Technology of plasticity, 5th ICTP, Columbus, Ohio, USA, Vol.1, October7-10, 1996, p.497.
【22】M. Koc, T. Altan, “Prediction of forming limits and parameters in the tube hydroforming process,” International Journal of Machine Tools & Manufacture, Vol. 42, 2002, p.123-138.
【23】Klaas, F.: Aufweitstauchen von Rohren durch Innenhochdruckumformen. Diss., Universität- GH Paderborn, Fortschrittsberichte VDI Reihe 2: Fertigungstechnik, Nr. 42, 1987, Düsseldorf: VDI Verlag.
【24】 D. M. Woo, “Tube-Bulging Under Internal Pressure and Axial Force,” J. Engineering Materials and Technology, 1973, p.219-223.
【25】N. Asnafi and A. Skogsgardh, “Theoretical and Experimental Analysis of Stroke-Controlled Tube Hydroforming,” J. Materials Science and Engineering, A279, 2000, p.95-100 .
【26】 N. Asnafi, “Analytical Modelling of Tube Hydroforming,” Thin-Walled Structures, Vol.34, 1999, p.295-330.
【27】 M. Strano, S. Jirathearanat, T. Altan, “Adaptive FEM Simulation for Tube Hydroforming: a Geometry-Based Approach for Wrinkle Detection,” Annals of the CIRP, 2001, Vol. 50,.
【28】K. Mori, T. Maeno, S. Maki “Mechanism of improvement of formability in pulsating hydroformingof tubes”, International Journal of Machine Tools & Manufacture 47, 2007, p.978–984.
【29】S. Keeler, “Enhanced Forming Limits Diagram Report for Auto/Steel Partnership”2003, Keeler Technology LLC
【30】水村正昭・佐藤浩一・栗山幸久一・有田英弘:平成21年度塑性加工春季講演会講演論文集, 2009, p.421-422.
【31】橋本裕二・井口貴朗・園部治・荒谷昌利・新宮豊久・鈴木孝司:第62 回塑性加工連合講演会講演論文集,2011, p.167-168.
【32】富澤淳・泰山正則・亀岡徳昌:第56 回塑性加工連合講演会講演論文集,2005 ,p.197-200.
【33】D. J. Benson, “The History of LS-DYNA”2007 , Livermore Software Technology Corp LSTC, Power Point
【34】T. Belytschko, J.I. Lin, C.S. Tsay,”Explicit Algorithms for Nonlinear Dynamics of Shells”AMD, 48, ASME, 1981, p.209-231.
【35】黃永茂,王國興,李世寶,“異形管液壓成形之有限元素分析”,Conference on Precision Machinery and Manufacturing Technology, 2010, C13.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code