Responsive image
博碩士論文 etd-0804117-135810 詳細資訊
Title page for etd-0804117-135810
論文名稱
Title
網印燒結熱電致冷晶片製作研究
Study on thermoelectric cooler fabrication with screen printing and sintering
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
63
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-26
繳交日期
Date of Submission
2017-09-04
關鍵字
Keywords
熱電材料、疊印、致冷晶片、Sb2Te3、Bi2Te3、網版印刷、燒結退火
thermoelectric cooler, thermoelectric, Bi2Te3, Sb2Te3, sintering annealing, layer by layer stacking, Screen printing
統計
Statistics
本論文已被瀏覽 5739 次,被下載 25
The thesis/dissertation has been browsed 5739 times, has been downloaded 25 times.
中文摘要
本論文利用具有簡便、降低製造成本及快速大量複製能力之網版印刷技術,結合燒結退火技術,開發一熱電晶片之致冷器(TEC)製程以應用於室溫空調。使用Bi、Te及Sb元素自行合成廣被研究之N型材料Bi2Te3及P型材料Sb2Te3。利用XRD及EDS進行成分分析,四點探針量測、霍爾量測即席貝克係數量測進行電性及熱電材料分析,並使用SEM對於結晶之表面形貌與其他特性進行交叉比對。現行之Bi-Te化合物研究多為莫爾比2:3之理想化學計量比例,於本研究亦嘗試其他莫爾比,根據研究結果顯示,亦如眾多研究之最佳結果,Bi2Te3為導電性及席貝克係數皆最高之材料。研究亦發現最佳燒結溫度與時間為300°C及30分鐘,在低溫以及不用費時太長之燒結時間,即能順利製成Bi-Te及Sb-Te化合物,這對生產致冷晶片有極大的好處。
最後製作TEC之p – n接腳,原型經燒結處理後,有剝落之現象,導致TEC製作失敗,檢討其結果,本論文最後提出一改良網印圖案及製程之構想,作為續行研究之建議。
Abstract
The fabrication process of layer by layer stacking screen printing of TEC fabrication yielded some electrical n-type part and p-type part legs peeling off. It caused the failure of fabrication of a complete TEC. In this work, due to the fail of the present screening process, a new screening pattern and process were given for the next stage of promotion of layer by layer screen printing process to avoid the peeling of thick stacked legs.
This thesis applied screen printing and sintering annealing technique which is convenient, low cost, and mass producible. The goal of this thesis is to developed a fabrication process of thermoelectric cooler (TEC) for applying to air conditioning. Bi2Te3 and Sb2Te3 are well known as n - type and p - type TE semiconductor materials, respectively. Bismuth (Bi), tellurium (Te), and antimony (Sb) elements were synthesized into Bi – Te and Sb - Te compounds by varying compositions. To characterize their electrical and thermoelectrical properties by four points measurement, Hall measurement, and Seebeck coefficient measurement. The material characteristic has been analyzed by XRD and EDS. Surface morphologies were obtained by SEM. In this work, varied mole proportion of Bi – Te and Sb – Te compounds were studied. Stoichiometry composition was found to exhibit an optimal property. The optimal fabrication process are found at 300°C for 30 minutes by sintering process.
目次 Table of Contents
論文審定書 i
浮水印 ii
中文摘要 iii
Abstract iv
Table Captions viii
Figure Captions ix
Symbols xii
Abbreviation xiii
Chapter 1. Introduction 1
1.1. General Background 1
1.2. Application 5
1.2.1. Heat engine applications 5
1.2.1.1. Vehicular heating and cooling 6
1.2.1.2. Medical Service and Food Industry 7
Chapter 2. Literature Review 9
2.1. Fundamental Principle 9
2.1.1. Thermoelectric Effect: Seebeck Effect 9
2.1.2. Thermoelectric Effect: Peltier Effect 10
2.1.3. Thermoelectric Effect: Thomson Effect 10
2.1.4. Figure of Merit, ZT 10
2.1.5. Power Factor 12
2.2. Properties of Bi-Te and Sb-Te compound TE 13
2.3. Hall Measurement 15
2.4. Fabrication 16
2.4.1. Hot pressing 16
2.4.2. Spark plasma sintering (SPS) 16
2.4.2.1. Melting spinning + SPS 16
2.4.2.2. Hydrothermal/Solvothermal + SPS 16
2.4.2.3. High energy ball milling + SPS 16
2.4.2.4. PVD/CVD 17
2.4.2.5. Screen Printing 17
2.5. Comparison with References 17
Chapter 3. Experimental Details 18
3.1. Thermoelectric Cooler Fabrication 19
3.1.1. Slurry Preparation of Screen Printing 19
3.1.2. Sample Preparation by Screen Printing 22
3.1.3. Sintering Process 25
3.1.3.1. Test Sample for Material Characterization 26
3.1.3.2. Thermoelectric parts 26
3.2. Instrument 28
Chapter 4. Results and Discussions 29
4.1. XRD Characterization 29
4.1.1. Bi2Te3/BiTe 29
4.1.2. Bi3Te2/Bi3Te/BiTe3 34
4.2. Electric Characterization 35
4.2.1. Four Points Probe 35
4.2.2. Hall Measurement 41
4.2.3. SEM 42
4.2.4. Seebeck Coefficient Instrument 43
4.2.5. Power Factor 44
4.3. Discussion 45
Chapter 5. Conclusion 46
Reference 47
參考文獻 References
[1] V. Zaitsev, M. Fedorov, I. Eremin, E. Gurieva, and D. Rowe, "Thermoelectrics handbook: macro to nano," CRC Press, Taylor & Francis, Boca Raton, 2006, pp. 5-10.
[2] A. F. Ioffe, "Semiconductor Thermoelements and Thermoelectric Cooling. Infosearch Limited," ed: London, 1957.
[3] 郭俊良, "精密網版印刷應用於微熱電致冷器之研製," 碩士, 工業教育學系, 國立臺灣師範大學, 台北市, 2009.
[4] H. Goldsmid and R. Douglas, "The use of semiconductors in thermoelectric refrigeration," British Journal of Applied Physics, vol. 5, no. 11,1954, p. 386.
[5] B. Poudel et al., "High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys," Science, vol. 320, no. 5876,2008, pp. 634-638.
[6] J. P. Heremans, M. S. Dresselhaus, L. E. Bell, and D. T. Morelli, "When thermoelectrics reached the nanoscale," Nature nanotechnology, vol. 8, no. 7,2013, pp. 471-473.
[7] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," Nature materials, vol. 7, no. 2,2008, pp. 105-114.
[8] X. Zheng, C. Liu, Y. Yan, and Q. Wang, "A review of thermoelectrics research–Recent developments and potentials for sustainable and renewable energy applications," Renewable and Sustainable Energy Reviews, vol. 32, 2014, pp. 486-503.
[9] B. LofyJ, "Thermoelectrics for environmental control in automobiles," presented at the In: Proceedings of the 21st IEEE international conference on thermoelectrics, Long Beach, (2002).
[10] N. F. Güler and R. Ahiska, "Design and testing of a microprocessor-controlled portable thermoelectric medical cooling kit," Applied Thermal Engineering, vol. 22, no. 11,2002, pp. 1271-1276.
[11] T. J. Seebeck, "Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz," Annalen der Physik, vol. 82, no. 3,1826, pp. 253-286.
[12] J.-c. Zheng, "Recent advances on thermoelectric materials," Frontiers of Physics in China, vol. 3, no. 3,2008, pp. 269-279.
[13] J. R. Sootsman, D. Y. Chung, and M. G. Kanatzidis, "New and old concepts in thermoelectric materials," Angewandte Chemie International Edition, vol. 48, no. 46,2009, pp. 8616-8639.
[14] A. Van Herwaarden and P. Sarro, "Thermal sensors based on the Seebeck effect," Sensors and Actuators, vol. 10, no. 3-4,1986, pp. 321-346.
[15] V. Zaitsev, M. Fedorov, I. Eremin, E. Gurieva, and D. Rowe, "Thermoelectrics handbook: macro to nano," CRC Press, Taylor & Francis, Boca Raton, 2006, pp. 701-702.
[16] W. Xie et al., "Identifying the specific nanostructures responsible for the high thermoelectric performance of (Bi, Sb) 2Te3 nanocomposites," Nano letters, vol. 10, no. 9,2010, pp. 3283-3289.
[17] C. Wood, "Materials for thermoelectric energy conversion," Reports on progress in physics, vol. 51, no. 4,1988, p. 459.
[18] S. Riffat and G. Qiu, "Comparative investigation of thermoelectric air-conditioners versus vapour compression and absorption air-conditioners," Applied Thermal Engineering, vol. 24, no. 14,2004, pp. 1979-1993.
[19] H. J. Goldsmid, "Bismuth telluride and its alloys as materials for thermoelectric generation," Materials, vol. 7, no. 4,2014, pp. 2577-2592.
[20] S. Khan and M. Chouhan, "REVIEW OF BISMUTH TELLURIDE (BI2TE3) NANOSTRUCTURE, CHARACTERIZATION AND PROPERTIES."
[21] 施敏 and 伍國, 半導體元件物理與製作技術. 2013.
[22] J. Shen, S. Zhang, S. Yang, Z. Yin, T. Zhu, and X. Zhao, "Thermoelectric and thermomechanical properties of the hot pressed polycrystalline Bi 0.5 Sb 1.5 Te 3 alloys," Journal of Alloys and Compounds, vol. 509, no. 1,2011, pp. 161-164.
[23] W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, "Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys," Applied Physics Letters, vol. 94, no. 10,2009, p. 102111.
[24] W. Ren, C. Cheng, Z. Ren, and Y. Zhong, "The effect of the precursor nanopowder size on the thermoelectric properties of nanostructured Bi–Sb–Te bulk materials," Physica B: Condensed Matter, vol. 405, no. 24,2010, pp. 4931-4936.
[25] C.-H. Kuo, C.-S. Hwang, M.-S. Jeng, W.-S. Su, Y.-W. Chou, and J.-R. Ku, "Thermoelectric transport properties of bismuth telluride bulk materials fabricated by ball milling and spark plasma sintering," Journal of Alloys and Compounds, vol. 496, no. 1,2010, pp. 687-690.
[26] L. Goncalves, J. Rocha, C. Couto, P. Alpuim, and J. Correia, "On-chip array of thermoelectric Peltier microcoolers," Sensors and Actuators A: Physical, vol. 145, 2008, pp. 75-80.
[27] 伍秀菁;汪若文;林美吟. 國家實驗研究院 2001.
[28] A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, and A. Boyer, "MOCVD growth of Bi 2 Te 3 layers using diethyltellurium as a precursor," Thin Solid Films, vol. 315, no. 1,1998, pp. 99-103.
[29] A. Giani, A. Boulouz, F. Pascal-Delannoy, A. Foucaran, E. Charles, and A. Boyer, "Growth of Bi 2 Te 3 and Sb 2 Te 3 thin films by MOCVD," Materials Science and Engineering: B, vol. 64, no. 1,1999, pp. 19-24.
[30] A. Boulouz, S. Chakraborty, A. Giani, F. P. Delannoy, A. Boyer, and J. Schumann, "Transport properties of V–VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices," Journal of Applied Physics, vol. 89, no. 9,2001, pp. 5009-5014.
[31] P. Jalonen, "A new concept® for making fine line substrate for active component in polymer," Microelectronics journal, vol. 34, no. 2,2003, pp. 99-107.
[32] T. Varghese et al., "High-performance and flexible thermoelectric films by screen printing solution-processed nanoplate crystals," Scientific reports, vol. 6, 2016, p. 33135.
[33] S. J. Kim, J. H. We, and B. J. Cho, "A wearable thermoelectric generator fabricated on a glass fabric," Energy & Environmental Science, vol. 7, no. 6,2014, pp. 1959-1965.
[34] D. Madan et al., "Enhanced performance of dispenser printed MA n-type Bi2Te3 composite thermoelectric generators," ACS applied materials & interfaces, vol. 4, no. 11,2012, pp. 6117-6124.
[35] 鄭安良, "P 型熱電材料Bi0.5Sb1.5Te3 之合成與分析," 碩士, 電機工程學系研究所, 國立中山大學, 高雄市, 2011.
[36] 廖信 and 許學舜, "網版印刷印製熱電材料膜之特性分析," 2010.
[37] D.-Y. Chung et al., "Oligomerization Versus Polymerization of Te xn-in the Polytelluride Compound BaBiTe3. Structural Characterization, Electronic Structure, and Thermoelectric Properties," Journal of the American Chemical Society, vol. 119, no. 10,1997, pp. 2505-2515.
[38] S. Sumithra, N. J. Takas, D. K. Misra, W. M. Nolting, P. Poudeu, and K. L. Stokes, "Enhancement in thermoelectric figure of merit in nanostructured Bi2Te3 with semimetal nanoinclusions," Advanced Energy Materials, vol. 1, no. 6,2011, pp. 1141-1147.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code