Responsive image
博碩士論文 etd-0804118-230400 詳細資訊
Title page for etd-0804118-230400
論文名稱
Title
某科學園區大氣中氨氣量測與時空分佈
Measurement and Spatiotemporal Distribution of Atmospheric Ammonia in a Science Park
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
98
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2018-07-26
繳交日期
Date of Submission
2018-09-05
關鍵字
Keywords
影響參數探討、被動採樣、空氣品質、科學園區、氨氣、污染源解析
ambient air quality, science park, atmospheric ammonia, influential parameters, source identification, passive sampling
統計
Statistics
本論文已被瀏覽 5684 次,被下載 0
The thesis/dissertation has been browsed 5684 times, has been downloaded 0 times.
中文摘要
本研究針對南部某科學園區背景大氣中氨氣濃度,設置四處大氣氨氣採樣站,藉以探討某科學園區內大氣中氨氣濃度之時空分佈,並蒐集彙整歷史資料,交叉比對及分析大氣中氨的可能污染來源。有鑑於針對科學園區內大氣中氨氣研究較少,而屬高科技產業的工業區域,本屬重點空氣品質監測區域,故實有必要針對此區域進行大氣中氨氣濃度之監測及分析研究,同時完善科學園區的全天候空品監控資料,藉以瞭解該區域內大氣中氨氣的可能排放來源。最後再將本研究結果與世界各區域大氣中氨氣濃度加以比較。
本研究利用在全球各地廣泛使用的小川(Ogawa)採樣器,配合使用針對氨氣監測用的Ogawa PS-154 NH3收集塗佈墊片,進行長時間不間斷氨氣濃度檢測。同時收集科學園區環境品質的監測計畫內氨氣濃度數據,其主要使用靛酚分光光度計法進行監測。在監測時期,被動採樣法顯示出該區域氨氣濃度空間分佈為西側(24.44±19.61 ppb)>東側(18.01±13.12 ppb)>南側(16.96±10.11 ppb)>北側(9.64±11.40 ppb),在去除降雨時數的影響後,與靛酚分光光度計法量測出該區域的氨氣濃度進行比較,兩者顯示相同的濃度變化趨勢,同時數據也達一定相關性。就兩種採樣法而言,最大的差異主要為採樣週期所造成,被動採樣為日夜不間斷的連續採集,而靛酚分光光度計法主要為人工採集,每間隔六天採樣一次,且皆為日間監測。
進一步分析該區域的可能污染源,兩種採樣法皆顯示,科學園區大氣中氨氣為該區域所產生,並同時與天氣氣象因子比對時,更顯示該區域的氨氣特性為人為排放源為主(固定排放源),與自然環境變化趨勢相反,但符合科學園區特性。最後也得出多項氣象因子對該區域氨氣濃度變化的影響。
Abstract
In this study, atmospheric ammonia was sampled passively to explore the spatiotemporal distribution of ammonia concentration in the atmosphere of a science park and to analyze the potential sources of ammonia in the science park. There is very few investigation on the ammonia measurement in the science park. High-tech industrial area is a key monitoring area, thus it is necessary to conduct the monitoring of atmospheric ammonia in this area for the improvement of domestic science. The all-weather, air-monitoring data of the scientific park is used to identify the potential sources of ammonia emissions to the atmosphere in this area. Finally, the results of this study are compared with the ammonia concentration in the atmosphere of various regions in the world.
An Ogawa passive sampler, which has been widely applied around the world, was used in conjunction with the Ogawa PS-154 NH3 collection coating gasket for ammonia measurement performing long-term continuous ammonia concentration. At the same time, the ammonia concentration data in the sampling program of the environmental quality of the science park was collected, which was mainly monitored by the indophenol spectrophotometer method. During the sampling period, the passive sampling method showed that the atmospheric ammonia concentrations in the region were ordered as west side (24.44±19.61 ppb)> east side (18.01±13.12 ppb)> south side (16.96±10.11 ppb)> north side (9.64±11.40 ppb). After deleting the rainfall data, the concentration of ammonia in the region was then compared with the indophenol spectrophotometer. Similar trend was observed between the two sampling methods. The major difference was mainly caused by the sampling period. Passive sampling was conducted continuously and covered daytime and nighttime, while the indophenol spectrophotometer method was mainly conducted manually only in the daytime in an interval of six days.
For analyzing the potential sources of ammonia in this area, both sampling methods showed that the ammonia in the atmosphere of the region was local sources while compared with the weather meteorological factors. It indicated that the major sources were anthropogenic emissions. The sources of ammonia were dominated by stationary sources instead of natural sources, concurring with the characteristics of the science park. Finally, the influences of meteorological factors on atmospheric ammonia concentration in the region was also investigated.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
摘要 iii
英文摘要 iv
目錄 vi
圖目錄 ix
表目錄 xii
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
1.3 研究架構與流程 2
第二章 文獻回顧 4
2.1 氨的物化特性 4
2.2 氨氣對工業的應用 7
2.3 大氣氨來源與分類 9
2.3.1 人為排放來源 10
2.3.2 自然排放來源 12
2.4 大氣中氨氣濃度 13
2.5 氨氣對空氣品質與人體健康的影響 15
2.6 氨氣的檢測方法 16
2.6.1 靛酚分光光度計法 16
2.6.2 環形擴散採樣器(Annular Denuder System, ADS) 17
2.6.3 小川被動採樣器(Ogawa passive sampler) 19
2.7 國內環境檢測現況 21
第三章 研究方法 23
3.1 採樣規劃 23
3.1.1 採樣時間規劃 23
3.1.2 採樣地點規劃 24
3.2 採樣設備 30
3.2.1 氨氣採樣設備簡介 30
3.2.2 採樣設備組裝步驟 31
3.2.3 回收收集塗佈墊片步驟 33
3.3 分析儀器與流程 33
3.3.1 分析儀器 33
3.3.2 化學分析流程 34
3.3.3 分析數據換算 36
3.4 品保與品管(QA/QC) 38
3.4.1 人員基本訓練內容 38
3.4.2 品保與品管分析 38
第四章 結果與討論 40
4.1 科學園區氣象分析 40
4.1.1 風速及風向歷史資料 40
4.1.2 採樣期間風速及風向 45
4.1.3 採樣期間氣象數據 46
4.2 採樣方法驗證 49
4.2.1 現場空白樣品(Field Blank Sample) 49
4.2.2 運送空白樣品(Trip Blank Sample) 50
4.3 科學園區大氣中氨氣時空分佈 51
4.3.1 被動採樣氨氣濃度數據 51
4.3.2 溫度與氨氣濃度比較 53
4.3.3 濕度與氨氣濃度比較 56
4.3.4 降水量與氨氣濃度比較 59
4.3.5 日照時數與氨氣濃度比較 62
4.3.6 PM2.5與氨氣濃度比較 65
4.4 大氣氨氣濃度數據比較 68
4.4.1 大氣氨氣濃度數據比較 68
4.4.2 氨氣濃度相關性比較 71
4.4 可能污染來源解析 73
4.5 與世界各地大氣中氨氣濃度比較 74
第五章 結論與建議 76
5.1 結論 76
5.2 建議 77
5.3 被動採樣使用心得 78
參考文獻 79
附錄A 科學園區大氣中氨氣濃度量測數據表 85
參考文獻 References
Alebic-Juretic, A., 2008. Airborne ammonia and ammonium within the Northern Adriatic area, Croatia. Environmental Pollution, 154,439-447.
Allegrini, I., Febo, A., Perrion, C. and Masia, P., 1993. Measurement of atmospheric nitric acid gas phase and nitrate in particulate matter by means of annular denuder. International Journal of Environmental Analytical Chemistry, 54,183-201.
Anderson, N., Strader, R. and Davidson, R., 2003. Airborne reduced nitrogen: ammonia emissions from agriculture and other sources. Environment International, 29,277-286.
Bari, A., Ferraro, V., Wilson, L. R., Luttinger, D. and Husain, L., 2003. Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Environment, 37,2825-2835.
Behera, S.N., Sharma, M., Aneja, V.P. and Balasubramanian, R., 2013. Ammonia in the atmosphere: A review on emission sources, atmospheric chemistry and deposition on terrestrial bodies. Environmental Science and Pollution Research, 20,8092-8131.
Butler Tom, Marino Roxanne, Schwede Donna, Howarth Robert, Sparks Jed and Sparks Kim, 2015. Atmospheric ammonia measurements at low concentration sites in the northeastern USA: implications for total nitrogen deposition and comparison with CMAQ estimates. Biogeochemistry, 122,191-210.
Bytnerowicz, A., Fraczek, W., Schilling, S. and Alexander D., 2010. Spatial and temporal distribution of ambient nitric acid and ammonia in the Athabasca Oil Sands Region, Alberta.Journal of Limnology, 69,11-21.
Clark, C.M. and Tilman, D., 2008. Loss of plant species after chronic low-level nitrogen deposition to prairie grasslands. Nature, 451,712-715.
Danalatos, D. and Glavas, S., 1999. Gas phase nitric acid, ammonia and related particulate matter at a Mediterranean coastal site, Patras, Greece. Atmospheric Environment, 33,3417-3425.
Dasch, J. M., Cadle, S. H., Dennedy, K. G. and Mulawa, P. A., 1989. Comparison of annular denuders and filter packs for atmospheric sampling. Atmospheric Environment, 23,2775-2782.
Doney, S.C., Mahowald, N., Lima, I., Feelys, R.A., Mackenzie, F.T., Lamarque, J.-F. and Rasch, P.J., 2007. Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences of the United States of America, 104,14580: 14585.
Eatough, N. L., McGreger, S., Lewis, E. A., Eatough, D. J., Huang, A. A. and Ellis, E. C., 1988. Comparison of six denuder methods and a filter pack for the collection of ambient HNO3(g), HNO2(g), SO2(g) in 1985 NSMC Study. Atmospheric Environment, 22,1601-1618.
Ferm, M., 1986. A Na2CO3-coated fenuder and filter for determination of gaseous HNO3 and particulate NO3- in the atmosphere. Atmospheric Environment, 20,1193-1201.
Filimon Kiros, Maheswar Rupakheti, Ram P. Regmi, Rashmi Maharjan and Manish Naja, 2016. Variability of anthropogenic gases: nitrogen oxides, sulfur dioxide, ozone and ammonia in Kathmandu Valley, Nepal. Aerosol and Air Quality Research, 16,3088–3101.
Fraser, M. P. and Cass, G. R., 1998. Detection of excess ammonia emissions from In-use vehicles and the implications for fine particle control. Environmental Science and Technology, 32,1053-1057.
Geiser Linda H., Ingersoll Anne R., Bytnerowicz Andrzej and Copeland Scott A., 2008. Evidence of enhanced atmospheric ammoniacal nitrogen in Hells Canyon National Recreation Area: Implications for natural and cultural resources. Journal of the Air & Waste Management Association, 58,1223-1234.
Hutchings, N. J., Sommer, S. G., Andersen, J. M. and Asman, W. A. H., 2001. A detailed ammonia emission inventory for Denmark. Atmospheric Environment, 35,1959-1968.
Jun-Ji Cao, Ting Zhang, Judith C. Chow, John G. Watson, Feng Wu, Hua Li, 2009. Characterization of atmospheric ammonia over Xi'an, China. Aerosol and Air Quality Research, 9,277-289.
Kentaro HAYASHI, Masayoshi MANO, Keisuke ONO, Takahiro TAKIMOTO, Akira MIYATA, 2013. Four-year monitoring of atmospheric ammonia using passive samplers at a single-crop rice paddy field in central Japan. J-STAGEトップ農業気象69 巻 4 号.
Lee, H. S., Kang, C. M., Kang, B. W. and Kim, H. K., 1999. Seasonal variations of acidic air pollutants in Seoul, South Korea. Atmospheric Environment, 33,3143-3452.
McCulloch, R. B., Few, G. S., Murray, G. C. and Aneja, V. P., 1998. Analysis of ammonia, ammonium aerosols and acid gases in the atmosphere at a commercial hog farm in Eastern North Carolina, USA. Environmental Pollution, 102,263-268.
Meng Zhaoyang, Zhang Renjian, Lin Weili, Jia Xiaofang, Yu Xiangming, Yu Xiaolan and Wang Gehui, 2014. Seasonal variation of ammonia and ammonium aerosol at a background station in the Yangtze River Delta Region, China. Aerosol and Air Quality Research, 14,756-766.
Misselbrook, T. H., Van Der Weerden, T. J., Pain, B. F., Jarvis, S. C., Chambers, B. J., Smith, K. A., Phillips, V. R. and Demmers, T. G. M., 2000. Ammonia emission factors for UK agriculture. Atmospheric Environment, 34,871-880.
Moeckli, M. A. Fierz, M. and Sigrist, M. W., 1996. Emission factors for ethene and ammonia from a tunnel study with a photoacoustic trace gas detection system. Environmental Science and Technology, 30,2864-2867.
Roadman M.J., Scudlark J.R., Meisinger J.J. and Ullman W.J., 2003. Validation of Ogawa passive samplers for the determination of gaseous ammonia concentrations in agricultural settings. Atmospheric Environment, 37,2317-2325.
Robarge, W.P., Walker, J.T., McCulloch, R.B. and Murray, G., 2002. Atmospheric concentrations of ammonia and ammonium at an agricultural site in the southeast United States. Atmospheric Environment, 36,1661-1674.
Sather Mark E., Mathew Johnson, Vet Robert, Cotie Joseph, Callison Ryan, Sakizzie Brenda, Oliva Sylvia and Crow Leon, 2008. Baseline ambient gaseous ammonia concentrations in the Four Corners area and eastern Oklahoma, USA. Journal of Environmental Monitoring, 10,1319-1325.
Sutton, M. A., Dragosits, U., Tang, Y. S. and Fowler, D., 2000. Ammonia emissions from non-agricultural sources in the UK. Atmospheric Environment, 34,855-869.
Toro Richard A., Canales Mauricio, Flocchini Robert G., Morales Raúl G.E. and Leiva G. Manuel A., 2014. Urban Atmospheric Ammonia in Santiago City, Chile. Aerosol and Air Quality Research, 14,33-44.
Van der Hoek, K. W., 1998. Estimating ammonia emission factors in Europe: Summary of the UNECE ammonia expert panel. Atmospheric Environmemt, 32,315-316.
Walker, J. T., Whitall, D. R., Robarge, W. and Paerl, H. W., 2004. Ambient ammonia and ammonium aerosol across a region of variable ammonia emission density. Atmospheric Environment, 38,1235-1246.
Wilson Sacoby M., and Serreb Marc L., 2007. Use of passive samplers to measure atmospheric ammonia levels in a high-density industrial hog farm area of eastern North Carolina. Atmospheric Environment, 41,6074-6086.
Wu Shui-Ping, Dai Lu-Hong, Wei Ya, Zhu Heng, Zhang Yin-Ju, Schwab James J., and Yuan Chung-Shin, 2018. Atmospheric ammonia measurements along the coastal lines of Southeastern China: Implications for inorganic nitrogen deposition to coastal waters. Atmospheric Environment, 177,1-11.
Wu, S.-P., Schwab, J., Yang, B.-Y., Zheng, A., and Yuan, C.-S., 2015. Two-Years PM2.5 observations at four urban sites along the coast of southeastern China. Aerosol and Air Quality Research, 15,1799-1812.
Wu, S.-P., Zhang, Y.-J., Schwab, J. J., Li, Y.-F., Liu, Y.-L. and Yuan, C.- S., 2017. High-resolution ammonia emissions inventories in Fujian, China. Atmospheric Environment, 162,100-114.
Yao X. H. and Zhang L., 2013. Analysis of passive-sampler monitored atmospheric ammonia at 74 sites across southern Ontario, Canada. Biogeosciences, 10,7913-7925.
林暐翔,2005,“大氣中氨氣及銨鹽微粒的量測與測性分析” 國立中興大學環境工程學系碩士論文。
陳揚桓,2014,“南部某工業園區空氣品質與異味調查” 國立中山大學環境工程研究所碩士論文。
王冠能,2012,“南部某座民生污水處理廠空氣中total-VOCs、H2S及NH3逸散濃度分佈調查” 國立屏東科技大學環境工程與科學系碩士論文。
徐泳森,2012,“高屏地區觀光夜市環境空氣中Total-VOCs、H2S與NH3特徵” 國立屏東科技大學環境工程與科學系碩士論文。
詹士儀,2004,“大氣中氨氣逸散特性之探討” 國立屏東科技大學環境工程與科學系碩士論文。
陳道智,2004,“大氣周界中NH3與PAHs相關性之探討” 國立屏東科技大學環境工程與科學系碩士論文。
陳乃華,2012,“掩埋場上方大氣中H2S、NH3及Total-VOCs特徵調查”國立屏東科技大學環境工程與科學系碩士論文。
林佳谷,陳叡瑜,2007,“善待氮氣:哈伯氮肥、氮循環與氮反撲”,工業安全衛生 221期 47-56。
文恒毅、白曛綾,1997,“環形擴散採樣器採集大氣中酸鹼性氣體之本土化適用性探討”,第十四屆空氣污染控制研討會論文集。
交通部運輸研究所,2016,“臺灣空氣污染排放量[TEDS9]氨源排放量推估手冊”, 運輸部門節能減碳策略評估整合資訊平台: http://dsstransport.iot.gov.tw/WebPage/DataBaseModule/GreenhouseGasParameter/pagAirPollution.aspx,檢索日期:2018 年7 月9 日。
牟中原,2015,“氮的故事–哈柏法製氨及其影響”,科技大觀園: https://scitechvista.nat.gov.tw/c/s0xs.htm,檢索日期:2018 年7 月9 日。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code