Responsive image
博碩士論文 etd-0804119-160750 詳細資訊
Title page for etd-0804119-160750
論文名稱
Title
第一原理研究二硫族化鋯薄膜之厚度相依的電子特性
First-principles study on thickness dependent electronic properties of ZrX2 (X = S, Se, or Te) thin films
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
69
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-09-04
繳交日期
Date of Submission
2019-09-04
關鍵字
Keywords
過渡金屬二硫族化物、厚度依賴性、二維材料、二硫化鋯、二硒化鋯、二碲化鋯、凡霍夫奇異點、第一原理計算、電子結構
ZrS2, thickness dependence, 2D materials, transition metal dichalcogenides, ZrTe2, ZrSe2, electronic structures, first-principles calculations, van Hove singularity
統計
Statistics
本論文已被瀏覽 5651 次,被下載 0
The thesis/dissertation has been browsed 5651 times, has been downloaded 0 times.
中文摘要
探究在過渡金屬二硫族化物層厚度和堆疊的影響,提供電子特性與可調性上之新洞見,並指引出新穎的研究和應用方向。本論文對一層至十層的二硫族化鋯薄膜之層相依的穩定性和電子特性進行了全面性的第一原理研究。研究結果顯示,在二硫族化鋯的塊材和薄膜中最穩定結構皆為 1T 堆疊結構。1T 二硫化鋯和二硒化鋯薄膜是絕緣體,從單層至十層的能隙是逐漸減少,然而 1T 二碲化鋯薄膜及塊材則皆是半金屬。最後,我們發現在無應變的二層和受應變的三層 1T 二硫化鋯薄膜中存在凡霍夫奇異點。由於厚度相依性和應變,這些結果展示了二維材料其可調整的電子特性。
Abstract
Probing the effects of layer thickness and stacking on transition metal dichalcogenides (TMD) offers novel insights on their electronic properties and tunability which leads to a new avenue of research and applications. A comprehensive first-principles study on layer-dependent stabilities and electronic properties of ZrX2 (X=S, Se, Te) thin films from 1 layer to 10 layers is performed in this thesis. Result shows that both ZrX2 bulk and thin films adopt 1T allotrope as the most stable structures. Furthermore, 1T ZrS2 and ZrSe2 thin films are insulators and their band gaps decreased as the number of layers is increased to 10 layers, while 1T ZrTe2 thin films and bulk are semi-metallic. Lastly, we discovered existence of van Hove singularities in unstrained 2-layer and strained 3-layer 1T ZrS2 thin films. These results showcase the tunable electronic properties of two-dimensional materials due to thickness dependence and strain.
目次 Table of Contents
論文審定書 i
Acknowledgements ii
摘要 iii
Abstract iv
List of Figures vii
List of Tables x
Chapter 1 1
Introduction 1
Chapter 2 5
Computational Methods 5
2.1 Vienna Ab-initio Simulation Package (VASP) 5
2.2 Electronic Band Structure 6
2.3 Electronic Density of States 7
2.4 Formation Energy 8
2.5 Lattice Strain 9
2.6 Spin-orbit Interaction 10
2.7 External Electric Field 11
2.8 Hybrid Functional Calculations 11
Chapter 3 12
Results and Discussion 12
3.1 Atomic Structures of Bulk and Layered ZrX2 12
3.2 Stability of ZrX2 Allotropes 17
3.3 Band Structure of Bulk ZrS2 20
3.4 Band Structure of Bulk ZrSe2 21
3.5 Band Structure of Bulk ZrTe2 23
3.6 Robust Dirac Fermion on Bulk ZrTe2 25
3.7 Band Structures of Layered ZrS2 27
3.8 Band Structures of Layered ZrSe2 29
3.9 Band Structures of Layered ZrTe2 31
3.10 van Hove Singularities for Select ZrX2 34
Chapter 4 39
Conclusion 39
References 41
Appendix 54
Supplementary Materials 54
參考文獻 References
1. Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films Supplementary. Science (80-. ). 5, 1–12 (2004).
2. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
3. Hsu, C. H., Huang, Z. Q., Macam, G. M., Chuang, F. C. & Huang, L. Prediction of two-dimensional organic topological insulator in metal-DCB lattices. Appl. Phys. Lett. 113, 4–9 (2018).
4. Hsu, C. H. et al. Quantum anomalous Hall insulator phase in asymmetrically functionalized germanene. Phys. Rev. B 96, 1–6 (2017).
5. Crisostomo, C. P. et al. Robust Large Gap Two-Dimensional Topological Insulators in Hydrogenated III-V Buckled Honeycombs. Nano Lett. 15, 6568–6574 (2015).
6. Chuang, F. C. et al. Prediction of large-gap two-dimensional topological insulators consisting of bilayers of group III elements with Bi. Nano Lett. 14, 2505–2508 (2014).
7. Conroy, L. E. & Park, K. C. Electrical properties of the Group IV disulfides, titanium disulfide, zirconium disulfide, hafnium disulfide and tin disulfide. Inorg. Chem. 7, 459–463 (1968).
8. McTaggart, F. K. & Wadsley, A. D. The sulphides, selenides, and tellurides of titanium, zirconium, hafnium, and thorium i. preparation and characterization. Aust. J. Chem. 11, 445–457 (1958).
9. Lee, P. A., Said, G. & Davis, R. Negative resistance and switching effect in the single crystal layer compounds SnS 2 and ZrS 2. Solid State Commun. 7, 1359–1361 (1969).
10. Gleizes, A. & Jeannin, Y. La phase ZrTe2 non-stoéchiometrique. J. Solid State Chem. 5, 42–48 (1972).
11. Clement, R. P., Davies, W. B., Ford, K. A., Green, M. L. H. & Jacobson, A. J. Organometallic Intercalates of the Layered Transition-Metal Dichalcogenides Tantalum Sulfide TaS2 and ZrS2. Inorg. Chem. 17, 2754–2758 (1978).
12. Jin, W. et al. Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 111, 1–5 (2013).
13. Kang, J., Zhang, L. & Wei, S. H. A Unified Understanding of the Thickness-Dependent Bandgap Transition in Hexagonal Two-Dimensional Semiconductors. J. Phys. Chem. Lett. 7, 597–602 (2016).
14. Yan, J. et al. Stacking-Dependent Interlayer Coupling in Trilayer MoS2 with Broken Inversion Symmetry. Nano Lett. 15, 8155–8161 (2015).
15. Van Baren, J. et al. Stacking-dependent interlayer phonons in 3R and 2H MoS2. 2D Mater. 6, (2019).
16. Hu, J., Shi, X., Wu, S., Ho, K. & Zhu, Z. Dependence of Electronic and Optical Properties of MoS2 Multilayers on the Interlayer Coupling and Van Hove Singularity. Nanoscale Res. Lett. 14, 288 (2019).
17. Xia, J. et al. Valley polarization in stacked MoS2 induced by circularly polarized light. Nano Res. 10, 1618–1626 (2017).
18. Yun, W. S., Han, S. W., Hong, S. C., Kim, I. G. & Lee, J. D. Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX 2 semiconductors (M = Mo, W; X = S, Se, Te). Phys. Rev. B - Condens. Matter Mater. Phys. 85, 1–5 (2012).

19. He, J., Hummer, K. & Franchini, C. Stacking effects on the electronic and optical properties of bilayer transition metal dichalcogenides MoS 2, MoSe 2, WS 2, and WSe 2. Phys. Rev. B - Condens. Matter Mater. Phys. 89, 1–11 (2014).
20. Yeh, P. C. et al. Layer-dependent electronic structure of an atomically heavy two-dimensional dichalcogenide. Phys. Rev. B - Condens. Matter Mater. Phys. 91, 1–6 (2015).
21. Ji, H. et al. Thickness-dependent carrier mobility of ambipolar MoTe2: Interplay between interface trap and Coulomb scattering. Appl. Phys. Lett. 110, (2017).
22. Yang, S. et al. Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors. Nanoscale 6, 7226–7231 (2014).
23. Zhang, H., Liu, L. M. & Lau, W. M. Dimension-dependent phase transition and magnetic properties of VS 2. J. Mater. Chem. A 1, 10821–10828 (2013).
24. Yang, J. et al. Thickness dependence of the charge-density-wave transition temperature in VSe2. Appl. Phys. Lett. 105, (2014).
25. Wilson, J. A., Di Salvo, F. J. & Mahajan, S. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24, 117–201 (1975).
26. Sakabe, D., Liu, Z., Suenaga, K., Nakatsugawa, K. & Tanda, S. Direct observation of mono-layer, bi-layer, and tri-layer charge density waves in 1T-TaS 2 by transmission electron microscopy without a substrate. npj Quantum Mater. 2, 1–5 (2017).
27. Ciarrocchi, A., Avsar, A., Ovchinnikov, D. & Kis, A. Thickness-modulated metal-to-semiconductor transformation in a transition metal dichalcogenide. Nat. Commun. 9, 1–6 (2018).

28. Fang, L., Liang, W., Feng, Q. & Luo, S.-N. Structural engineering of bilayer PtSe2 thin films: A first-principles study. J. Phys. Condens. Matter (2019). doi:10.1088/1361-648x/ab34bc
29. Villaos, R. A. B. et al. Thickness dependent electronic properties of Pt dichalcogenides. npj 2D Mater. Appl. 3, 1–8 (2019).
30. Kim, K. et al. Importance of the van Hove singularity in superconducting PdTe2. Phys. Rev. B 97, 1–5 (2018).
31. McChesney, J. L. et al. Extended van hove singularity and superconducting instability in doped graphene. Phys. Rev. Lett. 104, 1–4 (2010).
32. Irkhin, V. Y., Katanin, a. a. & Katsnelson, M. I. Effects of van Hove singularities on magnetism and superconductivity in the t-t’ Hubbard model: A parquet approach. Phys. Rev. B 64, 165107 (2001).
33. Ziletti, A., Huang, S. M., Coker, D. F. & Lin, H. Van Hove singularity and ferromagnetic instability in phosphorene. Phys. Rev. B - Condens. Matter Mater. Phys. 92, 1–11 (2015).
34. Puretzky, A. A. et al. Low-Frequency Raman Fingerprints of Two-Dimensional Metal Dichalcogenide Layer Stacking Configurations. ACS Nano 9, 6333–6342 (2015).
35. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).
36. Greenaway, D. L. & Nitsche, R. Preparation and optical properties of group IV–VI2 chalcogenides having the CdI2 structure. J. Phys. Chem. Solids 26, 1445–1458 (1965).
37. Whitehouse, C. R. & Balchin, A. A. Non-stoichiometry in ZrS2 and ZrSe2. Phys. Status Solidi 47, K173–K176 (1978).
38. Bartwal, K. S. & Srivastava, O. N. Superlattices in non-stoichiometric ZrS2 single crystals. Mater. Sci. Eng. B 14, 20–22 (1992).
39. Bartwal, K. S. & Srivastava, O. N. Current-controlled negative resistance in ZrS2 single crystals. Mater. Sci. Eng. B 14, L11–L13 (1992).
40. Bartwal, K. S., Lal, K. & Srivastava, O. N. Order-Disorder phase transformation in ZrS2 single crystals. Phase Transitions 42, 149–154 (1993).
41. Syrbu, N. N., Cebotari, V. Z. & Moldoveanu, N. P. Electronic and Vibrational Reflectivity and Absorption Spectra in Z r S 2 Crystals. Jpn. J. Appl. Phys. 35, 6126–6130 (1996).
42. Krishnakumar, B., Imae, T., Miras, J. & Esquena, J. Synthesis and azo dye photodegradation activity of ZrS2-ZnO nano-composites. Sep. Purif. Technol. 132, 281–288 (2014).
43. Toh, R. J., Sofer, Z. & Pumera, M. Catalytic properties of group 4 transition metal dichalcogenides (MX2; M = Ti, Zr, Hf; X = S, Se, Te). J. Mater. Chem. A 4, 18322–18334 (2016).
44. Zhang, Y. L., Wu, X. C., Tao, Y. R., Mao, C. J. & Zhu, J. J. Fabrication and field-emission performance of zirconium disulfide nanobelt arrays. Chem. Commun. 2683–2685 (2008). doi:10.1039/b804528c
45. Sargar, A. M., Patil, N. S., Mane, S. R., Gawale, S. N. & Bhosale, P. N. Optostructural and electrical studies on electrodeposited Indium doped ZrS2 thin films. J. Alloys Compd. 474, 14–17 (2009).
46. Moustafa, M., Zandt, T., Janowitz, C. & Manzke, R. Growth and band gap determination of the ZrSx Se2-x single crystal series. Phys. Rev. B - Condens. Matter Mater. Phys. 80, 1–6 (2009).

47. Jang, J. T. et al. Ultrathin zirconium disulfide nanodiscs. J. Am. Chem. Soc. 133, 7636–7639 (2011).
48. Zhang, M. et al. Controlled Synthesis of ZrS2 Monolayer and Few Layers on Hexagonal Boron Nitride. J. Am. Chem. Soc. 137, 7051–7054 (2015).
49. Wang, X. et al. Large scale ZrS2 atomically thin layers. J. Mater. Chem. C 4, 3143–3148 (2016).
50. Zhu, Y., Wang, X., Zhang, M., Cai, C. & Xie, L. Thickness and temperature dependent electrical properties of ZrS2thin films directly grown on hexagonal boron nitride. Nano Res. 9, 2931–2937 (2016).
51. Muhammad, Z. et al. Room temperature ferromagnetism in Fe-doped semiconductor ZrS 2 single crystals. Mater. Res. Express 5, (2018).
52. Mleczko, M. J. et al. HfSe2 and ZrSe2: Two-dimensional semiconductors with native high-κ oxides. Sci. Adv. 3, (2017).
53. Inada, R. & Tanuma, S. ichi. T2-Dependence of Electrical Resistivity in TiS2 and ZrSe2. Journal of the Physical Society of Japan 51, 1223–1227 (1982).
54. Zheng, X. G., Kuriyaki, H. & Hirakawa, K. Electrical Anisotropy of Layered Compound ZrSe2 and HfSe2. Journal of the Physical Society of Japan 58, 622–626 (1989).
55. Bartwal, K. S. & Srivastava, O. N. Negative resistance in ZrSe2 single crystals. Mater. Sci. Eng. B 18, 88–90 (1993).
56. Ikari, T., Maeda, K., Futagam, K. & Nakashima, A. Electrical properties of layered ZrSe2 single crystals annealed in selenium atmosphere. Jpn. J. Appl. Phys. 34, 1442–1446 (1995).


57. Patel, S. G., Agarwal, M. K., Batra, N. M. & Lakshminarayana, D. Electrical properties of zirconium diselenide single crystals grown by iodine transport method. Bull. Mater. Sci. 21, 213–217 (1998).
58. Vollath, D. & Szabó, D. V. Nanoparticles from compounds with layered structures. Acta Mater. 48, 953–967 (2000).
59. Hankare, P. P. et al. Effect of annealing on properties of ZrSe2 thin films. J. Cryst. Growth 294, 254–259 (2006).
60. Tsipas, P. et al. Epitaxial ZrSe<inf>2</inf>/MoSe<inf>2</inf> semiconductor v.d. Waals heterostructures on wide band gap AlN substrates. Microelectron. Eng. 147, 269–272 (2015).
61. Zhang, W., Huang, Z., Zhang, W. & Li, Y. Two-dimensional semiconductors with possible high room temperature mobility. Nano Res. 7, 1731–1737 (2014).
62. Nikonov, K. et al. Synthesis and spectroscopic characterization of alkali-metal intercalated ZrSe2. Dalt. Trans. 47, 2986–2991 (2018).
63. Muhammad, Z. et al. Electron doping induced semiconductor to metal transitions in ZrSe2 layers via copper atomic intercalation. Nano Res. 11, 4914–4922 (2018).
64. Aoki, Y., Sambongi, T., Levy, F. & Berger, H. Thermopower of HfTe2 and ZrTe2. Journal of the Physical Society of Japan 65, 2590–2593 (1996).
65. Machado, A. J. S. et al. Evidence for topological behavior in superconducting CuxZrTe2-y. Phys. Rev. B 95, 1–6 (2017).
66. Wang, H., Chan, C. H., Suen, C. H., Lau, S. P. & Dai, J. Y. Magnetotransport Properties of Layered Topological Material ZrTe2 Thin Film. ACS Nano 13, 6008–6016 (2019).


67. Dimple et al. Emergence of high piezoelectricity along with robust electron mobility in Janus structures in semiconducting Group IVB dichalcogenide monolayers. J. Mater. Chem. A 6, 24885–24898 (2018).
68. Tsipas, P. et al. Massless Dirac Fermions in ZrTe 2 Semimetal Grown on InAs(111) by van der Waals Epitaxy. ACS Nano 12, 1696–1703 (2018).
69. Zhao, X., Zhang, X., Wang, T., Wei, S. & Yang, L. Electronic structures and optical properties of ZrS2 monolayer by n- and p-type doping. J. Alloys Compd. 748, 798–803 (2018).
70. Wang, Y. & Geng, Z. Electronic structures of p-type impurity in ZrS2 monolayer. RSC Adv. 6, 58325–58328 (2016).
71. Ao, L., Pham, A., Xiao, H. Y., Zu, X. T. & Li, S. Engineering the electronic and magnetic properties of d0 2D dichalcogenide materials through vacancy doping and lattice strains. Phys. Chem. Chem. Phys. 18, 7163–7168 (2016).
72. Wang, H., Zhao, X., Gao, Y., Wang, T. & Wei, S. Effect of structural defects on electronic and magnetic properties of ZrS2 monolayer. Superlattices Microstruct. 116, 164–170 (2018).
73. Zhao, X., Chen, P., Yang, C., Zhang, X. & Wei, S. Electronic and magnetic properties of the N monodoping and (Mn, N)-codoped ZrS2. J. Mater. Sci. 53, 7466–7474 (2018).
74. Ao, L., Pham, A., Xiao, H. Y., Zu, X. T. & Li, S. Theoretical prediction of long-range ferromagnetism in transition-metal atom-doped d0 dichalcogenide single layers SnS2 and ZrS2. Phys. Chem. Chem. Phys. 18, 25151–25160 (2016).
75. Yang, B., Zheng, H., Han, R., Du, X. & Yan, Y. Tuning the magnetism of a ZrS2 monolayer by substitutional doping. RSC Adv. 4, 54335–54343 (2014).

76. Xin, Q. et al. Electronic structure in 1T-ZrS 2 monolayer by strain. Phys. E Low-Dimensional Syst. Nanostructures 93, 87–91 (2017).
77. Lv, H. Y., Lu, W. J., Shao, D. F., Lu, H. Y. & Sun, Y. P. Strain-induced enhancement in the thermoelectric performance of a ZrS2 monolayer. J. Mater. Chem. C 4, 4538–4545 (2016).
78. Zhai, H. et al. Pressure-induced phase transition, metallization and superconductivity in ZrS2. Phys. Chem. Chem. Phys. 20, 23656–23663 (2018).
79. Ahmad, S., D’Souza, R. & Mukherjee, S. Band gap modulation of ZrX 2 (X = S, Se, Te) mono-layers under biaxial strain and transverse electric field and its lattice dynamic properties: A first principles study. Mater. Res. Express 6, (2019).
80. Li, Y., Kang, J. & Li, J. Indirect-to-direct band gap transition of the ZrS2 monolayer by strain: First-principles calculations. RSC Adv. 4, 7396–7401 (2014).
81. Lv, H. Y. et al. Edge-controlled half-metallic ferromagnetism and direct-gap semiconductivity in ZrS2 nanoribbons. RSC Adv. 7, 33408–33412 (2017).
82. Ersan, F., Kadioglu, Y., Gökoğlu, G., Üzengi Aktürk, O. & Aktürk, E. T-ZrS nanoribbons: structure and electronic properties. Philos. Mag. 96, 2074–2087 (2016).
83. Shkvarin, A. S. et al. Band Gap Width Control by Cu Intercalation into ZrSe2. J. Phys. Chem. C 123, 410–416 (2019).
84. Zhao, X. et al. Modulating electronic and magnetic properties of monolayer ZrSe2 by doping. Superlattices Microstruct. 120, 659–669 (2018).
85. Wang, X., Du, J. & Wei, S. Impurity characteristics of group V and VII element-doped two-dimensional ZrSe2 monolayer. Phys. E Low-Dimensional Syst. Nanostructures 93, 279–283 (2017).

86. Holgate, T. C., Liu, Y., Hitchcock, D., Tritt, T. M. & He, J. Thermoelectric properties of Li-intercalated ZrSe2 single crystals. J. Electron. Mater. 42, 1751–1755 (2013).
87. Gao, Y., Zhao, X., Wang, H., Wang, T. & Wei, S. Electronic and magnetic properties of structural defects in pristine ZrSe2 monolayer. Comput. Mater. Sci. 146, 36–41 (2018).
88. Zhao, X. et al. Magnetic doping in two-dimensional transition-metal dichalcogenide zirconium diselenide. J. Alloys Compd. 698, 611–616 (2017).
89. Li, S., Zhou, M., Wang, X., Zheng, F. & Zhang, P. Tunable direct-indirect band gaps of ZrSe2 nanoribbons. J. Appl. Phys. 124, (2018).
90. Ahmad, S., D’Souza, R. & Mukherjee, S. Band gap modulation of ZrX 2 (X = S, Se, Te) mono-layers under biaxial strain and transverse electric field and its lattice dynamic properties: A first principles study. Mater. Res. Express 6, (2019).
91. Scholz, T. & Schmidt, P. Homogeneity range of the zirconium phosphide telluride Zr2+xPTe2and the high-temperature phase transformation to Zr2PTe. Eur. J. Inorg. Chem. 2015, 1457–1462 (2015).
92. Dabral, A., Lu, A. K. A., Chiappe, D., Houssa, M. & Pourtois, G. A systematic study of various 2D materials in the light of defect formation and oxidation. Phys. Chem. Chem. Phys. 21, 1089–1099 (2019).
93. Ataca, C., Şahin, H. & Ciraci, S. Stable, single-layer MX 2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J. Phys. Chem. C 116, 8983–8999 (2012).
94. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

95. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).
96. Perdew, J. P., Burke, K. & Ernzerhof, M. The stability of ionic crystal surfaces. Journal of Physics C: Solid State Physics, 12(22), 4977. Phys. Rev. Lett. 77, 3865–3868 (1996).
97. Teter, M. P., Payne, M. C. & Allan, D. C. Solution of Schrödinger’s equation for large systems. Phys. Rev. B 40, 12255–12263 (1989).
98. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, (2010).
99. Pack, J. D. & Monkhorst, H. J. ‘Specials points for Brillouin-zone integration’. J. Chem. Inf. Model. 53, 1689–1699 (2013).
100. M Ganose, A., J Jackson, A. & O Scanlon, D. sumo: Command-line tools for plotting and analysis of periodic ab initio calculations. J. Open Source Softw. 3, 717 (2018).
101. Ahrens, J., Geveci, B. & Law, C. ParaView: An end-user tool for large-data visualization. Vis. Handb. 836, 717–731 (2005).
102. Kittel, C. & Holcomb, D. F. Introduction to Solid State Physics. Am. J. Phys. 35, 547–548 (1967).
103. Martin, R. M. Electronic Structure. Contemporary Physics 52, (Cambridge University Press, 2004).
104. Emery, A. A. & Wolverton, C. High-Throughput DFT calculations of formation energy, stability and oxygen vacancy formation energy of ABO 3 perovskites. Sci. Data 4, 1–10 (2017).

105. Olinger, B. & Jamieson, J. C. Zirconium: Phases and Compressibility To 120 Kilobars. High Temp. - High Press. 5, 123–131 (1973).
106. Gallacher, A. C. & Pinkerton, A. A. A redetermination of monclinic γ-sulfur. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 49, 125–126 (1993).
107. Cherin, P. & Unger, P. The crystal structure of trigonal selenium. Inorg. Chem. 6, 1589–1591 (1967).
108. Cherin, P. & Unger, P. Two-dimensional refinement of the crystal structure of tellurium. Acta Crystallogr. 23, 670–671 (1967).
109. Nye, J. F. Physical properties of crystals: Their representation by tensors and matrices. (Oxford University Press, Inc., 1985).
110. Shankar, R. Principles of Quantum Mechanics. The Mathematical Gazette 21, (Springer US, 1994).
111. Krukau, A. V., Vydrov, O. A., Izmaylov, A. F. & Scuseria, G. E. Influence of the exchange screening parameter on the performance of screened hybrid functionals. J. Chem. Phys. 125, 0–5 (2006).
112. Perdew, J. P. et al. Generalized gradient approximation for solids and their surfaces. 136406, 1–4 (2007).
113. Haas, P., Tran, F. & Blaha, P. Calculation of the lattice constant of solids with semilocal functionals. Phys. Rev. B - Condens. Matter Mater. Phys. 79, 1–10 (2009).
114. Onuki, Y., Inada, R., Tanuma, S., Yamanaka, S. & Kamimura, H. Electrochemical characteristics of ZrSe2 in a secondary lithium battery. Solid State Ionics 8, 141–145 (1983).


115. Brauer, H. E., Starnberg, H. I., Holleboom, L. J. & Hughes, H. P. The electronic structure of ZrSe 2 and Cs x ZrSe 2 studied by angle-resolved photoelectron spectroscopy. J. Phys. Condens. Matter 7, 7741–7760 (1995).
116. Cheng, C., Sun, J. T., Chen, X. R. & Meng, S. Hidden spin polarization in the 1T-phase layered transition-metal dichalcogenides MX 2 (M = Zr, Hf; X = S, Se, Te). Sci. Bull. 63, 85–91 (2018).
117. Kumar, A. & Ahluwalia, P. K. Effect of quantum confinement on electronic and dielectric properties of niobium dichalcogenides NbX2 (X = S, Se, Te). J. Alloys Compd. 550, 283–291 (2013).
118. Zhang, X. et al. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 44, 2757–2785 (2015).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:開放下載的時間 available 2024-09-04
校外 Off-campus:開放下載的時間 available 2024-09-04

您的 IP(校外) 位址是 3.146.255.127
現在時間是 2024-04-26
論文校外開放下載的時間是 2024-09-04

Your IP address is 3.146.255.127
The current date is 2024-04-26
This thesis will be available to you on 2024-09-04.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 2024-09-04

QR Code