Responsive image
博碩士論文 etd-0805109-163146 詳細資訊
Title page for etd-0805109-163146
論文名稱
Title
有機/無機複合材料介電特性之研究及其量測方法之開發
Study on the Dielectric Properties of Organic/Inorganic Composites with the Development of Measurement Method
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
151
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-06-19
繳交日期
Date of Submission
2009-08-05
關鍵字
Keywords
介電常數、矩形共振腔法、複合材料、鋇鍶鈦鋯、聚醚醯亞胺
Dielectric constant, Polyetherimide, Rectangular cavity resonator method, Composites, (Ba0.8Sr0.2)(Ti0.9Zr0.1) O3
統計
Statistics
本論文已被瀏覽 5695 次,被下載 9
The thesis/dissertation has been browsed 5695 times, has been downloaded 9 times.
中文摘要
本研究深入探討聚醚醯亞胺(Polyetherimide,PEI)/鋇鍶鈦鋯((Ba0.8Sr0.2)(Ti0.9Zr0.1) O3,BSTZ8291)複合材料之物理、介電和機械特性,並利用數種混合方程式對於複合材料之介電常數進行模擬,以探討PEI/BSTZ8291複合材料之等效混合結構。另外,在本研究中提出一高頻介電常數量測方式-矩形共振腔法(Rectangular cavity resonator method),利用不同頻率所產生的共振模態即可計算出複合材料微波頻段之介電常數值。最後利用PEI/BSTZ8291複合材料做為基板,並於其上製作一圓極化天線,中心頻率設定在925 MHz,可應用於無線射頻讀取器(Radio frequency identification reader,RFID reader)部分。製作於PEI/BSTZ8291複合材料基板之圓極化天線,經量測結果與製作於商用FR4基板之天線比較可獲得相近的特性。
PEI/BSTZ8291複合材料其介電常數在量測頻率為1 MHz時會隨BSTZ8291陶瓷添加量之增加而由2.58增加到17.71 (10-70 wt%),並利用數種混合方程式進行介電常數之模擬。當陶瓷填充比高於45 wt%,介電常數之實驗值和理論值開始產生差異,其原因乃由於陶瓷粉末填充密度(Density)和晶粒邊界(Grain boundary)增加的關係。另外,(Ba0.8Sr0.2)(Ti0.9Zr0.1))O3陶瓷粉體之居禮溫度(Curie temperature)約在40 oC,因此PEI/BSTZ8291複合材料會在接近室溫時呈現最佳的介電特性,並減小介電常數對於溫度之變化。
PEI/BSTZ8291複合材料介電常數不大會隨著量測頻率的變化(1~13.5 GHz)而有所變化,這代表在此頻段內極化的機制(Polarization mechanism)對於複合材料的影響是不大的,此結果也改善以往BaTiO3陶瓷會受到極化的機制的影響的缺陷,在頻率為5 GHz的時候會有介電鬆弛現象產生。PEI/BSTZ8291複合材料其拉伸強度(Ttensile strength)會隨著陶瓷添加量的增加而有所改善,因為陶瓷與高分子間內作用力增加且沒有相分離的情形產生。當陶瓷添加量增加到50 wt%時,複合材料的楊氏模數(Young’s modulus)約改善58%,延伸率(Elongation at break)則隨著添加量的增加而下降。在圓極化天線應用方面,利用PEI/BSTZ複合材料基板來設計CP天線,其增益、頻寬和軸比皆可獲得比設計在商用FR4基板上的CP天線較佳的特性,證明本研究中所開發之PEI/BSTZ8291複合材料可應用於實際元件上。
Abstract
Polyetherimide/(Ba0.8Sr0.2)(Ti0.9Zr0.1)O3 (PEI/BSTZ8291) composites are fabricated using PEI, dispersant, solvents, and BSTZ powder. The effects of the content of BSTZ8291 filler on the chemical, physical, mechanical and dielectric properties of PEI/BSTZ8291 composites are studied in this paper.
As the content of BSTZ filler increases from 10 wt% to 70 wt%, the relative permittivity of PEI/BSTZ8291 composites at 1 MHz increase from 2.58 to 17.71. The measurement of relative permittivity of PEI/BSTZ8291 composites is developed using the “Rectangular Cavity Resonator” method from 1 GHz to 13.5 GHz. The relative permittivity is calculated by observing the frequencies of resonant cavity modes. The relative permittivity of PEI/BSTZ8291 composites is almost unchanged as the measured frequency increases from 1 GHz to 13.5 GHz. The presented characteristics are better than those of polymer/BaTiO3 composites.
The improvement in the tensile strength of PEI/BSTZ8291 composites may be caused by the increased interactions between neat PEI and BSTZ8291 ceramic powder, and no phase separation phenomenon occurred. The Young’s modulus of the PEI/BSTZ8291 composites is improved by about 58% as the content of BSTZ8291 filler from 0 to 50 wt% and the elongation at break of the composites decreases as the content of BSTZ8291 filler increases, indicating that the composite becomes somewhat brittle as compared with neat PEI.
PEI/BSTZ8291 composite substrates are developed for the applications of circularly polarized (CP) antennas. A CP antenna with a simple structure is developed as the ultra high frequency (UHF) band radio frequency identification (RFID) reader application. The fabricated antenna has an impedance bandwidth spanning from 901 to 949 MHz, which covers the entire band of Taiwan UHF-RFID frequency. The measured return loss, Smith chart, axial ratio, radiation patterns and CP gain characteristics of antennas fabricated on PEI/BSTZ8291 composites are excellent in the band of Taiwan UHF-RFID frequency. It is demonstrated that the CP antenna fabricated on PEI/BSTZ substrate has the better characteristics and small size than those fabricated on FR4 substrate.
目次 Table of Contents
中文摘要…………………………………………………………... I

英文摘要…………………………………………………………... III

總目錄……………………………………………………………... IV

圖目錄……………………………………………………………... VIII

表目錄……………………………………………………………... XII


第一章 緒論
1-1 前言........................................................................................ 1
1-2 有機/無機複合材料發展及文獻回顧………………...……. 1
1-3 研究動機………….………………………………………… 5

第二章 理論基礎
2-1 (Ba1-xSrx)(Ti1-yZry)O3陶瓷………………………………….. 8
2-1-1 介電陶瓷簡介……...……………………………………... 8
2-1-1 鈦酸鋇(BaTiO3)陶瓷……………………………………... 8
2-1-3 鍶、鋯參雜對鈦酸鋇材料的影響……………………….. 9
2-2 聚醚醯亞胺………………………………………………… 10
2-3 陶瓷粒子之分散…………………………………………… 12
2-4 介電理論…………………………………………………… 15
2-5 電容量與介電率之間的關係……………………………… 16
2-6 預測複合材料相對介電常數的方程式…………………… 17
2-6-1 對數混合經驗方程式…………………………………….. 17
2-6-2 Yamada混合方程式……………………………………… 18
2-6-3 Jayasundere and Smith混合方程式……………………… 19
2-6-4 有效介質理論…………………………………………….. 19
2-7 矩形共振腔模式…………………………………………… 20
2-8 圓極化理論………………………………………………… 24

第三章 實驗步驟及設備介紹
3-1 實驗材料…………………………………………………… 26
3-2 鋇鍶鈦鋯陶瓷之合成……………………………………… 26
3-3 分散劑特性分析…………………………………………… 27
3-4 聚醚醯亞胺/鋇鍶鈦鋯陶瓷複合材料之製程……………... 28
3-5 物理特性分析……………………………………………… 28
3-5-1 掃描式電子顯微鏡………………………………………. 28
3-5-2 X光繞射…………………………………………………. 29
3-5-3 粒徑分析…………………………………………………. 29
3-6 化學特性分析……………………………………………… 29
3-6-1 傅立葉轉換紅外線光譜儀………………………………. 29
3-6-2 能量散佈光譜儀…………………………………………. 30
3-7 熱特性分析………………………………………………… 31
3-7-1 熱重損失…………………………………………………. 31
3-7-2 示差掃描熱量……………………………………………. 31
3-8 介電特性量測……………………………………………… 32
3-8-1 低頻介電特性量測之步驟………………………………. 32
3-8-2 高頻介電特性量測之步驟………………………………. 32
3-9 機械特性量測……………………………………………… 33
3-10 圓極化天線設計原理……………………………………… 34

第四章 結果與討論
4-1 鋇鍶鈦鋯陶瓷……………………………………… 35
4-1-1 BSTZ陶瓷之SEM圖…………………………………… 35
4-1-2 BSTZ陶瓷之粒徑分布圖……………………………….. 35
4-1-3 BSTZ陶瓷之EDS圖……………………………………. 35
4-1-4 BSTZ陶瓷之XRD圖…………………………………… 36
4-1-5 BSTZ陶瓷其介電常數-頻率變化圖……………………. 36
4-1-6 BSTZ陶瓷其介電常數-溫度變化圖……………………. 37
4-2 分散劑……………………………………………………… 37
4-3 PEI/BSTZ 複合材料………………………………………. 38
4-3-1 PEI/BSTZ複合材料之SEM圖………………………… 38
4-3-2 PEI/BSTZ複合材料之XRD圖…………………………. 39
4-3-3 PEI/BSTZ複合材料之EDS圖…………………………... 39
4-3-4 PEI/BSTZ複合材料低頻介電特性分析………………... 40
4-3-5 PEI/BSTZ複合材料高頻介電特性分析………………... 48
4-3-6 PEI/BSTZ複合材料機械特性分析……………………... 53
4-4 PEI/BSTZ複合材料之應用-圓極化天線特性分析……….. 57

第五章 結論………………………………………………………... 60
參考文獻……………………………………………………………... 62
參考文獻 References
[1] S. P. Armes, S. Gottesfled, J.G Berry, F. Garzon, S. F. Agnew, “Counducting polymer-colloidal silica composites.” Polymer, 32, (1991), 2325-2329.
[2] C. G. Gebelein, Biometic, Polymer, Plenum Press, New York, (1990).
[3] C. Pithan, D. Hennings, and R. Waser, “Progress in the Synthesis of Nanocrystalline BaTiO3 Powders for MLCC.” International Journal of Applied Ceramic Technology, 2, (2005), 1-14.

[4] Y. Sakabe, “Multilayer Ceramic Capacitors.” Current opinion in solid state & materials science, 2, (1997), 584-587.

[5] J. E. Post, “Microwave Performance of MCM-D Embedded Capacitors with Interconnects.” Microwave and Optical Technology Letters, 46, (2005), 487-492.
[6] Y. Bai, Z. Y. Cheng, V. Bharti, H. S. Xu, and Q. M. Zhang, ”High-dielectric-constant ceramic-powder polymer composites.” Applied Physics Letter, 76, (2000), 3804-3806.
[7] H. Windlass, P. M. Raj, D. Balaraman, Swapan K. Bhattacharya and R. R. Tummala, ”Polymer-ceramic nanocomposite capacitors for system-on-package (SOP) applications.” IEEE Treanaction On Advanced Packaging, 26, (2003), 10-16.
[8] D. H. Kuo, C. C. Chang, T. Y. Su, W. K. Wang , B. Y. Lin, ” Dielectric properties of three ceramic/epoxy composites.” Materials Chemistry and Physics, 85, (2004), 201-206.
[9] J. M. Park, H. Y. Lee, J. J. Kim, E. T. Park and Y. K. Chung, ” Dielectric properties of Ni-coated BaTiO3-PMMA composite” IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 55, (2008), 1038-1042.
[10] S. D. Choa, J. Y. Lee, J. G. Hyun and K. W. Paik, ” Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications.” Materials Science and Engineering B, 110, (2004), 233-239.
[11] 蔡立渝,” 聚醯亞胺與鈦酸鋇奈米複合薄膜之製備及其電特性之研究”中原大學化學系,(2001)。
[12] 張謙志,”平面型複合電容之裝備與電性量測”國立東華大學,(2000)。
[13] J. G. Hyun, S. Lee, S. D. Cho and K. W. Paik, ” Frequency and temperature dependence of dielectric constant of Epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate.” IEEE Electronic Components and Technology Conference, (2005), 1241-1247.
[14] K. W. Paik, S. D. Cho, J. Y. Lee, and l. G. Hyun,” Low tolerance Epoxy/BaTiO3 composite embedded capacitor films (ECFs).” IEEE Int’l Symposium on Electronic Materials and Packaging, (2002), 341-347.
[15] D. H. Kuo, C. C. Lai and T. Y. Su, “Dielectric behavior of Nb2O5-doped TiO2/epoxy thick films.” Ceramics International, 30, (2004), 2177-2181.
[16] Z. M. Dang, L. Z. Fan, Y. Shen, C. W. Nan, ” Dielectric behavior of novel three-phase MWNTs/BaTiO3/PVDF composites.” Materials Science and Engineering B, 103, (2003), 140-144.
[17] Z. M. Dang, J. B. Wu, L. Z. Fan and C. W. Nan, ” Dielectric behavior of Li and Ti co-doped NiO/PVDF composites.” Chemical Physics Letters, 376, (2003), 389-394.
[18] Z. M. Dang and C. W. Nan, “Dielectric properties of LTNO ceramics and LTNO/PVDF composites” Ceramics International.” 31, (2005), 349-351.
[19] G. Subodh , C. Pavithrana, P. Mohanan and M.T. Sebastian” PTFE/Sr2Ce2Ti5O16 polymer ceramic composites for electronic packaging applications.” Journal of the European Ceramic Society, 27, (2007), 3039-3044.
[20] T. Liu, Y. Tong and W. D. Zhang, “Preparation and characterization of carbon nanotube/polyetherimide nanocomposite films.” Composites Science and Technology, 67, (2007), 406-412.
[21] P. Musto, G. Ragosta, G. Scarinzi and L. Mascia, “Polyimide-silica nanocomposites: spectroscopic, morphological and mechanical investigations.” Polymer, 45, (2004), 1697-1706.
[22] B. W. Hakki and P.D. Coleman, ”A dielectric resonator method of measuring inductive capacities in the millimeter range.” IEEE Transaction Microwave Theory Technology, MTT-8, (1960), 402-410.
[23] W. E. Courtney “Analysis and evaluation of the method of measuring complex permittivity and permeability of microwave insulator.” IEEE Transaction Microwave Theory Technology” MTT-18, (1970), 476-485.
[24] P. Wheless, D. Kajfez, ”The use the higher resonant measuring in measuring the dielectric constant of dielectric resonator.” IEEE MTT-S Symposium Dig., (1985), 473-476.
[25] Y. Kobayashi, S. Tanaka, “Resonant modes of dielectric rod resonator short circuited at both ends by parallel conducting plate.” IEEE Transaction Microwave Theory Technology, MTT-28, (1980), 1077-1085.
[26] D. Roy, and S. B. Krupanidhia, “Excimer laser ablated barium strontium titanate thin films for dynamic random access memory applications.” Applied Physics Letters, 62, (1993), 1056-1058。

[27] T. B. Wu, C. M. Wu, and M. L. Chen, “Highly insulative barium zirconate-titanate thin films prepared by RF magnetron sputtering for dynamic random access memory applications.” Applied Physics Letters, 69, (1996), 2659-2611。

[28] S. S. Park, and S. G. Yoon, “Structure and electrical properties of sputter deposited (Ba1–xSrx)(Ti1–yZry)O3 thin films.” Journal of The Electrochemical Society, 148, (2001), 155-158。
[29] 邱信雄,”(Ba,Sr)(Ti,Zr)O3介電材料之物性及電性探討”國立成功大學,(1999)。
[30] U. Y. Paik, V. A . Hackley, S. C. Choi and Y. G. Ting , “The effect of electrostatic repulsive forces on the stability of BaTiO3 particles Suspended in non-aqueous media.” Colloids and Surfaces, 135, (1998), 77-88.
[31] J. Th. G. Overbeek, “Interparticle forces in colloid science.” Powder Technology, 37, (1984), 195-208.
[32] D. J. Shaw, “Introduction to colloid and surface chemistry.” Butterworth Heinemann, 4th Edition, (1992).
[33] D. H. Napper, “Steric stabilization,” Journal of Colloid and Interface Science, 58, (1977), 390-407.
[34] D. H. Napper, “Polymeric Stabilization of Colloid Dispersion.” Academic Press, (1983), 18-30.
[35] W. D. Kingery, H. K. Bowen and D. R. Uhlmann, “Introduction to ceramic.” Second Edition, Wiley, New York, (1976).
[36] C. J. Dias and D. K. Das-Gupta, “Inorganic ceramic/polymer ferroelectric composite electrets.” IEEE Transactions Dielectrics and Electrical Insulation, 3, (1996), 706-734.
[37] T. Yamada, T. Ueda and T. Kitayama, “Piezoelectricity of a high-content lead zirconate titanate/polymer composite.” Journal of Applied Physics, 53, (1982), 4328-4332.
[38] D. E. Aspnes, “Optical properties of thin-films.” Thin Solid Films, 89, (1982), 249-262.
[39] Bruggeman D.A.G., “Calculations of various physical constants of heterogeneous substance : part I, dielectric constants and conductivity of isotropic substance.” Annals of Physics (Leipzig) 24, (1935), 636-641.
[40] S. D. Cho, S. Lee, J. G. Hyun, and K. W. Paik, “Comparison of theoretical predictions and experimental values of the dielectric constant of epoxy/BaTiO3 composite embedded capacitor films.” Journal of Materials Science. Materials in Electronics, 16, (2005), 77-84.
[41] Ansoft high frequency structure simulator (HFSS) version 10.0, Ansoft Corporation, (2005).
[42] K. W. Paik, S. D. Cho, J. Y. Lee, and l. G. Hyun,” Low Tolerance Epoxy/BaTiO3 Composite Embedded Capacitor Films (ECFs)” IEEE Int’l symposium on Electronic Materials and Packaging, (2002), 341-347.
[43] D. H. Kuo, C. C. Chang, T. Y. Su, W. K. Wang and B. Y. Lin, “Dielectric behaviors of multi-doped BaTiO3/epoxy composites.” Journal of European Ceramic Society, 21, (2001), 1171-1177.
[44] S. D. Cho, J. Y. Lee, J. G. Hyuna, K. W. Paik, “Study on epoxy/BaTiO3 composite embedded capacitor films (ECFs) for organic substrate applications.” Materials Science and Engineering B, 110, (2004), 233-239.
[45] K. W. Jang and K. W. Paik, ”Screen printable epoxy/BaTiO3 embedded capacitor pastes with high dielectric constant for organic substrate applications.” Journal of Applied Polymer Science, 110, (2008), 798-807.
[46] K. W. Jang and K. W. Paik, “A study on epoxy/BaTiO3 embedded capacitor pastes for organic substrates.” IEEE Electronic Components and Technology Conference, (2006), 1504-1509.
[47] S. D. Cho, K. W. Jang, J. G. Hyun, S. Lee, K. W. Paik, H. Kim, and J. H. Kim, “Epoxy/BaTiO3 composite films and pastes for high dielectric constant and low-tolerance embedded capacitors fabrication in organic substrates” IEEE Transactions on Electronics Packaging Manufacturing, 28, (2005), 297-303.
[48] A. Namba, O. Wada, Y. Toyota, Y. Fukumoto, Z. L. Wang, R. Koga, T. Miyashita and T.Watanabe, ”A simple method for measuring the relative permittivity of printed circuit board materials.” IEEE Transactions on Electromagnetic Compatibility, 43, (2001), 515-519.
[49] S. D. Cho, S. Lee, J. G. Hyun, and K. W. Paik, “Comparison of theoretical predictions and experimental values of the dielectric constant of epoxy/BaTiO3 composite embedded capacitor films.” Journal of materials science. Materials in electronics, 16, (2005), 77-84.
[50] 樂文禮,”聚醯亞胺奈米矽氧複合材料選擇性封裝之研究”國立成功大學,(2002)。
[51] E. J. Siochi, D. C. Working, C. Park, P. T. Lillehei, J. H. Rouse and C. C. Topping, “Melt processing of SWCNT-polyimide nanocomposite fibers.” Composites Part B, 35, (2004), 439-46.
[52] J. J. Ge, D. Zhang, Q. Li, H. Q. Hou, M. J. Graham and L. M. Dai, “Multiwalled carbon nanotubes with chemically grafted polyetherimides.” Journal of the American Chemical Society, 127, (2005), 9984-9985.
[53] D. William, J. R. Callister, “Materials Science and Engineering an Introduction.“ Seventh Edition, John Wiley & Sons.
[54] M. A. Kossel, R. Kung, H. Benedickter, and W. Bachtold, “An active tagging system using circular-polarization modulation.” IEEE transactions on microwave theory and techniques, 47, (1999), 2242-2248.
[55] P. C. Sharma and K. C. Gupta , “Analysis and optimized design of single feed circularly polarized microstrip antennas.” IEEE Transactions on Antennas and Propagation, 31, (1983), 949-955.

[56] D. H. Lee, P. Park, J. P. Kim, and J. H. Choi, “Aperture-coupled UHF RFID reader antenna for a handheld application.“ Microwave and Optical Technology Letters, 50, (2008), 1261-1263.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.235.246.51
論文開放下載的時間是 校外不公開

Your IP address is 3.235.246.51
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code