Responsive image
博碩士論文 etd-0805109-204632 詳細資訊
Title page for etd-0805109-204632
論文名稱
Title
鎂合金管板材熱間擠製之研究
Study on Hot Extrusion Processes of Magnesium Alloy Tubes and Sheets
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
106
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-20
繳交日期
Date of Submission
2009-08-05
關鍵字
Keywords
有限元素分析、等溫擠製、鎂合金薄板及薄管
constant temperature extrusion, finite element analysis, magnesium thin sheets and tubes
統計
Statistics
本論文已被瀏覽 5634 次,被下載 0
The thesis/dissertation has been browsed 5634 times, has been downloaded 0 times.
中文摘要
本文針對鎂合金薄板及薄管之熱間擠製進行解析及實驗之研究。首先進行熱間壓縮試驗,以獲得鎂合金在高溫時之塑流應力。接著使用有限元素分析進行薄板及薄管之熱間擠製模擬。在薄板擠製解析方面,找出合適模具軸承長度設計、初始鎂錠溫度及擠速控制以獲得健全薄板。此外,經由擠製速度對模具出口產品溫度之影響,找出欲達等溫擠製之擠製速度變化圖。在薄管擠製解析方面,分析鎂錠從分流孔、銲合室至模具軸承部之流動型態,探討模具之彈性變形,並藉由擠製條件之適當控制,以獲得健全之薄管。最後進行熱間擠製實驗,由擠製荷重及產品尺寸等解析值與實驗值之比較,驗證解析模式之適用性。
Abstract
This study involves analyses and experiments of magnesium’s hot extrusion of thin sheets and tubes. At first, hot compression tests are conducted to obtain the magnesium’s plastic flow stresses in high tempearatures, which will be used in the finite element analysis. In the FE simulations of thin sheet extrusion, the flow pattern of the magnesium billet within the die, the temperature history at die exit and the elastic deformation of the die is analyzed. Sound and good thin sheets are obtained by appropriate die design, initial billet temperature and extrusion velocity’s control. The goal of constant temperature extrusion is expected to achieved by controlling the extrusion velocity which will influences the billet temperature at die exit. In FE simulations of thin tube extrusion, the flow pattern of the magnesium billet within the port-holes, welding chamber and die bearing is analyzed. The elastic deformation of the die is dicussed. Extrusion of sound thin tubes is achieved by appropriate extrusion conditions. Finally, hot extrusion experiments are conducted and the experimental values of the extrusion load and dimensions of the products are compared with the analytical values to verify the validity of the analytical models.
目次 Table of Contents
目錄 II
表目錄 V
圖目錄 VI
摘要 X
第一章 緒論 1
1-1 前言 1
1-2 擠製加工製程簡介 6
1-3 鎂合金擠製加工成形法之優勢 8
1-4 鎂合金擠製加工技術之影響參數 9
1-5 文獻回顧 10
1-5-1 鎂合金擠製之相關文獻 10
1-5-2 鋁合金擠製之相關文獻 13
1-6 研究目的 18
第二章 薄板擠製有限元素分析 20
2-1 鎂合金AZ31熱間壓縮試驗 20
2-2 鎂合金AZ31薄板擠製模擬之模組建立 26
2-2-1 有限元素分析軟體DEFORM-3D簡介 26
2-2-2 鎂合金薄板擠製之模型建立 27
2-3 鎂合金AZ31薄板擠製之模擬參數設定 29
2-4 鎂合金AZ31薄板擠製之製程參數研究 32
2-4-1 模具軸承設計之探討 32
2-4-2 初始擠錠溫度之探討 39
2-4-3 擠製速度之探討 43
第三章 薄管擠製有限元素分析 48
3-1 鎂合金AZ31薄管擠製有限元素分析之模組建立 48
3-1-1 薄管之幾何尺寸與擠製模型建立 48
3-1-2 分流孔、心軸與銲合室之設計 50
3-1-3 模具軸承部之設計 52
3-2 鎂合金AZ31薄管擠製之製程參數研究 53
3-2-1 擠製參數設定 53
3-2-2 初始擠錠溫度之探討 53
3-2-3 擠製速度之探討 56
第四章 鎂合金熱間擠製實驗 60
4-1 實驗設備及流程 60
4-1-1 擠製機台簡介 61
4-1-2 擠製實驗流程簡介 64
4-2 模具之設計及製作 66
4-2-1 薄板模具之設計與製作 66
4-2-2 空心薄管模具之設計與製作 72
4-3 擠製實驗參數之設定 74
4-3-1 厚度1.50mm薄板擠製實驗參數之設定 74
4-3-2 厚度1.00mm薄板擠製之實驗與模擬參數設定 74
4-4 解析值與實驗值之比較 76
4-4-1 厚度1.50mm薄板擠製之解析值與實驗值之比較 76
4-4-2 厚度1.00mm薄板擠製之解析值與實驗值之比較 80
第五章 結論 84
5-1 厚度1.50mm薄板擠製之有限元素解析 84
5-2 厚度1.50mm及1.00mm薄板擠製之實驗 85
5-3 厚度1.00mm空心薄管擠製之有限元素解析 86
5-4 未來展望 86
參考文獻 88
參考文獻 References
[1]H. Yoshida, Y. Sakaida, T. Nakamura, K. Hayakawa, K. Takahashi and Y. Awaki, “Shaping of helical gear by cold extrusion through expansion of inner diameter of workpiece”, The Proceedings of the 59th Japanse Joint Conference for the Technology of Plasticity, 2008, pp.105-106.
[2]M. Nikawa and M. Shiraishi, “Extrusion process for producing the hollow shaft with helical tooth in the outside/inside”, The Proceedings of the 59th Japanse Joint Conference for the Technology of Plasticity, 2008, pp.113-114.
[3]K. Suzuki, M. Hoshino and Y. Uchida, “Examination of orthogonal channel extrusion method―A new method of extrusion of fuel cell separator using orthogonal channel Ⅰ―”, Journal of the JSTP, Vol. 50, No. 576, 2009, pp.49-53.
[4]L. Naiyi, “The outlook of Magnesium Applications in the Automotive Industry”, Manufracturing System Dept. Ford Research Laboratory, Forg Motor Company.
[5]ASM Speciality Handbook, “Magnesium and Magnesium Alloys”, ASM International, 1999, pp.3-43.
[6]V. Otto, “Fundamentals of extrusion”, Candy Industry, 2008.
[7]E. Totten ,D. MacKenzie, “Handbook of Aluminum”, Marcel Dekker, Inc., New York, Volume 1, 2003, pp.385-480.
[8]S. Liang, Z. Liu and E. Wang, “Simulation of extrusion process of AZ31 magnesium alloy”, Materials Science&Engineering A, 2007.
[9]D. Atwell and M. Barnett, “Extrusion limits of magnesium alloys”, Metallurgical and Materials Transactions A, Vol. 38A, 2007, pp.3032-3041.
[10]R. Lapovok, M. Barnett and C. Davies, “Construction of extrusion limit diagram for AZ31 magnesium alloy by FE simulation”, Journal of Materials Processing Technoloy, Vol. 146, 2004, pp.408-414.
[11]T. Murai, S. Matsuoka, S. Miyamoto and Y. Oki, “Effects of extrusion conditions on microstructure and mechanical properties of AZ31B magnesium alloy extrusions”, Journal of Materials Porcessing Technology, Vol. 141, 2003, pp.207-212.
[12]Y. Chen, Q. Wang, J. Peng, C. Zhai and W. Ding, “Effects of extrusion ratio on the microstructure and mechanical properties of AZ31 Mg alloy”, Journal of Materials Processing Technology, Vol. 182, 2007, pp.281-285.
[13]X. Duan, X. Velay, and T. Sheppard, “Applications of finite element method in the hot extrusion of aluminum alloys”, Materials Science and Engineering A, Vol. 369, 2004, pp.66-75.
[14]T. Aida, N. Takatsuji, K. Matsuki, T. Ohara and S. Kamado, “Effects of extrusion speed on properties of the extruded AZ31B magnesium alloy machined chip”, Journal of Japan Institute of Light Metals, Vol. 56, No. 3, 2006, pp.166-171.
[15]N. Takatsuji, K. Matsuki, T. Aida, K. Murotani and J. Syobo, “Effects of extrusion conditions on hot extruding characteristics of magnesium alloy”, Journal of the JSTP, Vol. 43, No. 501, 2002, pp.983-987.
[16]T. Aida, N. Takatsuji, K. Matsuki, T. Ohara and S. Kamado, “Improvement in Surface properties of extrusions from Mg-Al-Zn based alloy machined chips”, Journal of Japan Institute of Light Metals, Vol. 55, No. 9, 2005, pp.400-404.
[17]N. Takatsuji, M. Tokizawa, S. Murakami, K. Murotani, K. Matsuki and K. Yuasa, “Effects of die shapes on welding strength of extruded pipes by port-hole die―Improvement in quality of hollow extrusions Ⅰ―”, Journal of the JSTP, Vol. 36, No. 414, 1995-7, pp.731-736.
[18]H. Jo, S. Lee, S. Lee and B. Kim, “Prediction of welding pressure in the non-steady state porthole die extrusion of Al7003 tubes”, International Journal of Machine Tools&Manufacture 22, 2002, pp.753-759.
[19]S. Murakami, N. Takatsuji, M. Tokizawa, K. Murotani, K. Matsuki and K. Hashimoto, “Inside diameter accuracy of extruded pipes by porthole die―Study on improvement in quality of hollow extrusionsⅡ―”, Journal of the JSTP, Vol. 37, No. 423, 1996-4, pp.403-408.
[20]D. Lesniak and W. Libura, “Extrusion of sections with varing hickness through pocket dies”, Journal of Materials Processing Technology, Vol. 194, 2007, pp.38-45.
[21]K. Kim, C. Lee and D. Yang, “Investigation into the improvement of welding strength in three-dimensional extrusion of tubes using porthole dies”, Journal of Materials Processing Technology, Vol. 130-131, 2002, pp.426-431.
[22]M. Kleiner and M. Schikorra, “Simulation of welding cjamber conditions for composite profile extrusion”, Journal of Materials Processing Technology, Vol. 177, 2006, pp.587-590.
[23]T. Mori, N. Takatsuji, K. Matsuki, T. Aida, K. Murotani and K. Uetoko, “Measurement of pressure distribution on die surface and deformation of extrusion die in hot extrusion of 1050 aluminum rod”, Journal of Materials Processing Technology, Vol. 130-131, 2002, pp.421-425.
[24]Z. Peng and T. Sheppard, “Effect of die pockets on multi-hole die extrusion”, Materials Science and Engineering A, Vol. 407, 2005, pp.89-97.
[25]T. Chanda, J. Zhou and J. Duszczyk, “A comparative study on iso-speed extrusion and isothermal extrusion of 6061 Al alloy using 3D FEM simulation”, Journal of Materials Processing Technology, Vol. 114, 2001, pp.145-153.
[26]L. Li, J. Zhou and J. Duszczyk, “A 3D FEM simulation study on the isothermal extrusion of a 7075 aluminum billet with a predetermined non-linear temperature distribution”, Modelling and Simulation in Materials Science and Engineering, Vol. 11, 2003, pp.401-416.
[27]L. Li, J. Zhou and J. Duszczyk, “Predicition of temperature evolution during the extrusion of 7075 aluminum alloy at various ram speeds by means of 3D FEM simulation”, Journal of Materials Processing Technology, Vol. 145, 2004, pp.360-370.
[28]M. Takashi and T. Yoneyama, “Isothermal extrusion of aluminum alloys”, Sumitomo Light Metal Technical Reports, Vol. 45, No. 1, 2004, pp.7-16
[29]M. Barnett, “Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31”, Journal of Light Metals, Vol.1, 2001, pp.167-177.
[30]S. Ion and F. Humphreys, “Dynamic recrystallisation and development of microstructure during the high temperature deformation of magnesium”, Acta Metallurgica, Vol.30, 1982, pp.1909-1919.
[31]T. Yamaguchi and H. Rong, “Effect of extrusion strain on deformation of aluminum shape”, The Proceedings of the 54th Japanese Joint Conference for the Technology of Plasticity, Vol.54, 2003, pp.363-364
[32]I. Flitta and T. Sheppard, “Material flow during the extrusion of simple and complex cross-sections using FEM”, Materials Science and Technology, Vol.21, No.6, 2005, pp.648-656.
[33]Fuh-Kuo Chen, Tyng-Bin Huang and Shou-Jung Wang, “A study of flow-through phenomenon in the press forging of magnesium-alloy sheets”, Journal of Materials Processing Technology, Vol.187-188, pp.770-774
[34]www.matweb.com
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.174.95
論文開放下載的時間是 校外不公開

Your IP address is 3.138.174.95
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code