Responsive image
博碩士論文 etd-0805109-212244 詳細資訊
Title page for etd-0805109-212244
論文名稱
Title
以濺鍍法備製正型與負型氧化鋅薄膜
Characterization of P- and N-type Zinc Oxide Films Prepared by RF Sputtering
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
73
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2009-07-21
繳交日期
Date of Submission
2009-08-05
關鍵字
Keywords
薄膜、氧化鋅、濺鍍法
ZnO, Sputtering, Thin Film
統計
Statistics
本論文已被瀏覽 5740 次,被下載 1374
The thesis/dissertation has been browsed 5740 times, has been downloaded 1374 times.
中文摘要
本研究利用反應性磁控濺鍍法來濺鍍正型與負型氧化鋅薄膜,而氧化鋅,由於其高exiton binding energy (60 meV)及寬能帶(~3.4 eV)之特性,使其具有在室溫下發紫外光之能力。其純氧化鋅因為其本質缺陷和氧空缺關係導致一般都呈現負型。本實驗利用鋅靶材通入比例之氮氣與氬氣先成長氮化鋅,再藉由氧氣熱退火方法和利用氧化鋅鈀材通入比例的氮氣與氬氣的方法來研究氧氣熱退火溫度與氮氣混入之比例來使負型氧化鋅轉變為正型。在物性方面,藉由場效應電子顯微鏡(FESEM)來與XRD來探討氧化鋅薄膜在不同的參數下所得的結果,並利用化學分析電子光譜儀(ESCA)分析薄膜化學組態。在光學性質方面,藉由光致螢光光譜儀,分析在不同濺鍍參數下所得的薄膜之光激發光特性。
Abstract
In this study, the reactive rf magnetron sputtering was used to deposit P- and N-type zinc oxide (ZnO) thin films, Zinc oxide (ZnO) has higher exiton bindingenergy (60 meV) and high band gap (~3.4 eV) that can provide efficient ultraviolet (UV) light at room temperature (RT). Intrinsic ZnO is thought to be N-type primarily because of donor defects such as zinc interstitials (Zni) and oxygen vacancies (VO). we want to prepared N-doped ZnO (ZnO:N) films, we used two method : Deposition Zn3N2 films by dc sputtering of Zn target in proportional Ar and N2 mixture. After deposition, it were thermally oxidized at difference temperatures to prepared N-doped ZnO (ZnO:N) films. And to make use of rf sputtering that ZnO target in proportional Ar and N2 mixture, to prepared N-doped ZnO (ZnO:N) films. The physical characteristics of ZnO thin films with different parameter were obtained by the analyses of field emission scanning electron microscopic (FE-SEM) and XRD. The electron spectroscopy for chemical analysis (ESCA) was used to analyze the chemical states of ZnO thin films. In optical properties, the photoluminescence spectrometer was used to measure the photoluminescence characteristics (PL).
目次 Table of Contents
Chapter 1 ...............................................................1
Introduction..........................................................................................................1
1.1 Introduction of Transparent Conductive Oxide thin films (TCO) ............1
1.2 Background and Properties of Zinc Oxide (ZnO) ......................................3
1.3 Applications of Zinc Oxide ZnO...................................................................5
1.4 Silicon substrate .............................................................................................8
1.5 Advantages of Sputtering ..............................................................................8
1.6 Motivation.......................................................................................................9
Reference ............................................................................................................13
Chapter 2 .............................................................19
Experiments........................................................................................................19
2.1 Sputtering System ........................................................................................19
2.1.1 Sputtering Technique........................................................................19
2.1.2 RF Sputtering ....................................................................................20
2.2 Deposition Procedures .................................................................................20
2.2.1 Cleaning Procedures for Si Wafer ...................................................20
2.3 Zinc Oxide Growth by Sputtering..............................................................21
2.3.1 ZnO Film Prepared with Zn Target by DC Sputtering.................21
2.3.2 ZnO Film Prepared with ZnO Target by RF Sputtering ..............21
2.4 Characteristics..............................................................................................22
2.4.1 Physical Properties............................................................................22
2.4.2 Chemical Properties..........................................................................23
2.4.3 Electrical Properties .........................................................................24
2.4.4 Optical Properties .............................................................................24
Reference ............................................................................................................32
Chapter 3 .............................................................33
Result and Discussion ........................................................................................33
3.1 Characteristics of ZnO Films by DC Power Sputtering with Zn Target..................33
3.1.1 The Influence of O2 Flow Rate for The Film Thickness ................33
3.2 Characteristics of N-doped ZnO (ZnO:N) Films by DC Power Sputtering with Zn Target ................................................................................33
3.2.1 The DC Power Sputtering Zn3N2 Thin Film and Oxidation.........33
3.2.2 The Surface Morphology and Structure Analysis of N-doped ZnO
(ZnO:N) Thin Films...................................................................................34
3.2.3 The Chemical Analysis of N-doped ZnO (ZnO:N) Thin Film .......34
3.2.4 The Electronic Measurement of The N-doped ZnO (ZnO:N) Thin
Film..............................................................................................................35
3.2.5 The Optical Properties of The N-doped ZnO (ZnO:N) Thin Film......36
3.3 Characteristics of ZnO Films by RF Power Sputtering with ZnO Target
..............................................................................................................................36
3.3.1 The Surface Morphology and Structure Analysis of ZnO Thin
Film for N2 Gas Flow Rate ........................................................................36
3.3.2 The Electronic Measurement of The ZnO Thin Film for N2 Gas
Flow Rate ....................................................................................................37
3.3.3 The Optical Properties of The ZnO Thin Film for N2 Gas Flow
Rate..............................................................................................................37
Reference ............................................................................................................59
Chapter4 ..............................................................60
Conclusion ..........................................................................................................60
參考文獻 References
[1-1] J. L.Vossen, “ Transparent Conducting Films ”, Physics of Thin Films, 9(1977),1-64
[1-2] M. S. Wu, A. Azuma, T. Shiosaki, A. Kawabata, “ Low-loss ZnO
Optical Waveguides for SAW-AO applications ”IEEE Trans. Ultrasonics, 36(1989), 442-445
[1-3]Walter Water andSheng-Yuan Chu, “Physical and structure Properties of ZnO Sputtered Films ”, Materials Letters, 55(2002), 67-72
[1-4] Y. Yoshino, T. Makino, Y. Katayama and T. Hata, “ Optimization of Zinc Oxide Thin Films by Radio Frequency Sputtering ”, Vacuum, 59(2000), 538-545
[1-5] S .J. Pearton, D. P. Norton, K. Ip, Y.W. Heo, and T. Steiner. ”Recent progress in processing and properties of ZnO,” Propress in materials science, vol. 50, pp. 294-340, 2005.
[1-6] R. F. Service, “Will UV lasers beat the blues?,” Science, vol. 276, pp. 895-895, 1997.
[1-7] B. J. Ingram, G. B. Gonzalez, D. R. Kammler, M. I. Bertoni, and T.O. Mason, “Chemical and structural factors governing transparent conductivity in oxides,” J. Electroceram., vol. 13, pp. 167-175, 2004.
[1-8] S. C. Minne, S. R. Manalis, and C. F. Quate, “Parallel atomic force microscopy using cantilevers with integrated piezoresistive sensors and integrated piezoelectric actuators,” Appl. Phys. Lett., vol. 67, pp. 3918-3920, 1995.
[1-9] H. Nanto, T. Minami, and S. Takata, Phys. Status Solidi A 65, K131 (1981).
[1-10] H. Morgan and D. E. Brodie, Can. J. Phys. 60, 1387 (1982).
[1-11] J. Aronovich, A. Ortiz, and R. H. Bube, J. Vac. Sci. Technol. 16, 994 (1979).
[1-12] R. D. Vispute, V. Talyansky, S. Choopun, R. P. Sharma, T. Venkatesan,M. He, X. Tang, J. B. Halpern, M. G. Spencer, Y. X. Li, L. G. Salamanca- Riba, A. A. Iliadis, and K. A. Jones, Appl. Phys. Lett. 73, 348 (1998).
[1-13] S. Bethke, H. Pan, and B. W. Wesseis, Appl. Phys. Lett. 52, 138 (1988).
[1-14] S. B. Zhang, S. H. Wei, and A. Zunger, Phys. Rev. B 63, 075205 (2001).
[1-15] E.-C. Lee, Y.-S. Kim, Y.-G. Jin, and K. J. Chang, Phys. Rev. B 64, 085120 (2001).
[1-16] I. Shalish, H. Temkin, and V. Narayanamurti, “Size-dependent surface luminescence in ZnO nanowires,” Phys. Rev. B, vol. 69, pp. 245401-4, 2004.
[1-17] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol. B, vol. 22, no. 3, pp. 932-948, 2004.
[1-18] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Mater., vol. 4, no. 1, pp. 42-46, 2005.
[1-19] M.-C. Jeong, B.-Y. Oh, M.-H. Ham, S.-W. Lee, and J.-M. Myoung, “ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes,” Small, vol. 3, no. 4, pp. 568-572, 2007.
[1-20] J. Bao, M. A. Zimmer, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett., vol. 6, no. 8, pp. 1719-1722, 2006.
[1-21] R. Könenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys.Lett., vol. 85, no. 24, pp. 6004-6006, 2004.
[1-22] L. Gangloff, E. Minoux, K. B. K. Teo, P. Vincent, V. T. Semet, V. T. Binh, M. H. Yang, I. Y. Y. Bu, r. G. Lacerda, G. Pirio, J. P. Schnell, D. Pribat, D. G. Hasko, G. A. J. Amaratunga, W. I. Milne, and P. Legagneux, “Self-aligned, gated arrays of individual nanotube and nanowire emitters,” Nano Lett., vol. 4, no. 9, pp. 1575-1579, 2004.
[1-23] H. K. Yadav, K. Sreenivas, and V. Gupta, “Enhanced response from metal/ZnO bilayer ultraviolet photodetector,” Appl. Phys. Lett., vol. 90, no. 17, pp. 172113, 2007.
[1-24] R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl.Phys. Lett., vol. 90, no. 24, pp. 243106, 2007.
[1-25] S. Seki, Y. Sawaka, and T. Nishide, ”Indium-tin-oxide thin films
prepared by dip-coating of indium diacetate monohydroxide and tin dichloride,” Thin Solid Films, vol. 388, no. 1-2, pp. 22-26, 2001.
[1-26] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, and T. J. Marks, “Indium tin oxidealternatives – high work function
transparent conducting oxides as anodes for organic light-emitting
diodes,” Adv. Mater., vol. 13, no. 19, pp. 1476-1480, 2001.
[1-27] J. Owen, M. S. Son, K.-H. Yoo, B. D. Ahn, and S. Y. Lee, “Organic photovoltaic devices with Ga-doped ZnO electrode,” Appl. Phys. Lett., vol. 90, no. 3, pp. 033512, 2007.
[1-28] B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung, J.-Y.Hwang, and D.-S. Seo,12 “Transparent conductive Al-dped ZnO films for liquid crystal displays,” J. Appl. Phys., vol. 99, no. 12, pp. 124505, 2006.
[1-29] S. Kandasamy, W. Wlodarski, A. Holland, S. Nakagomi, and Y.Kokubun, ”Electrical characterization and hydrogen gas sensing properties of a n-ZnO/p-SiC Pt-gate metal semiconductor field effect transistor,” Appl. Phys. Lett., vol. 90, no. 6, pp. 064103, 2007.
[1-30] P. D. Batista and M. Mulato, ”ZnO extended-gate field-effect transistors as pH sensors,” Appl. Phys. Lett., vol. 87, no. 14, pp. 143508, 2005.
[1-31] Z. Fan and J. G. Lu, ”Gate-refreshable nanowire chemical sensors,” Appl. Phys. Lett., vol. 86, no. 12, pp. 123510, 2005.
[1-32] S. K. Hazra and S. Basu, ”Hydrogen sensitivity of ZnO p-n homojunctions,” Sens. Actuators B, vol. 117, no. 1, pp. 177-182, 2006.
[1-33] G. Kenanakis, D. Vernardou, E. Koudoumas, G. Kiriakidis, and N. Katsarakis, ”Ozone sensing properties of ZnO nanostructures grown by the aqueous chemical growth technique,” Sens. Actuators B, vol. 124, no. 1, pp. 187-191, 2007.
[1-34] G. Socol, E. Axente, C. Ristoscu, F. Sima, A. Popescu, N. Stefan, I. N. Mihailescu, L. Escoubas, J. Ferreira, S. Bakalova, and A. Szekeres, ”Enhanced gas sensing of Au nanocluster-doped or –coatedzinc oxide thin films,” J. Appl. Phys., vol. 102, no. 8, pp. 083103, 2007.
[1-35] S. C. Navale, V. Ravi, I. S. Mulla, S. W. Gosavi, and S. K.Kulkarni, ”Low temperature synthesis and NOx sensing properties of nanostructured Al-doped ZnO,” Sens. Actuators B, vol. 126, no. 2, pp.382-386, 2007.
[1-36] H. Gong, J. Q. Hu, J. H. Wang, C. H. Ong, and F. R.Zhu, ”Nano-crystalline Cu-doped ZnO thin film gas sensor for CO,” Sens. Actuators B, vol. 115, no. 1, pp. 247-251, 2006.
[1-37] S. M. Sze, Semiconductor devices physics and technology 2nd edition.
[1-38] D. C. Oh, J. J. Kim, H. Makino, T. Hanada, M. W. Cho, T. Yao, and H. J. Ko, Appl. Phys. Lett. 86, 042110 (2005).
[1-39] G. Du, Y. Ma, Y. Zhang, and T. Yang, Appl. Phys. Lett. 87, 213103
(2005).
[1-40] J. F. Rommeluère, L. Svob, F. Jomard, J. Mimila-Arroyo, A. Lusson, and V. Sallet, Appl. Phys. Lett. 83, 287 (2003).
[1-41] L. L. Chen, J. G. Lu, and Z. Z. Ye, Appl. Phys. Lett. 87, 252106 (2005).
[1-42] J. G. Lu, Z. Z. Ye, F. Zhuge, Y. J. Zeng, B. H. Zhao, and L. P. Zhu, Appl. Phys. Lett. 85, 3134 _2004_.
[1-43] B. S. Li, Y. C. Liu, Z. Z. Zhi, D. Z. Shen, Y. M. Lu, J. Y. Zhang, X.W. Fan,R. X. Mu, and D. O. Henderson, J. Mater. Res. 18, 8 (2003).
[1-44] E. Kamińska, A. Piotrowska, J. Kossut, R. Butkutè, W. Dobrowolski, R. Łukasiewicz, A. Barcz, R. Jakieła, E. Dynowska, E. Przeździecka, M. Aleszkiewicz, P. Wojnar, and E. Kowalczyk, Phys. Status Solidi C 2, 1119(2005).
[2-1] Sorab K. Ghandhi, “Etching and Cleaning”, in VLSI Fabrication Principles (2nd ed.), Wiley Interscience, New York, pp. 591-594, 601-603, 1994.
[2-2] J. Goldstein, D. Newbury, D. joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. Michael, scanning electron microscopy and X-ray microanalysis
[3-1] Powder Diffraction File compiled by the Joint Committee on
Powder Diffraction, Card No. 35-0762.
[3-2] F. Sinoki and A. Itoh, J. Appl. Phys., vol. 46[8], pp. 3381-3384,
(1975).
[3-3] Ma J G, Liu Y C, Mu R, Zhang J Y, Lu Y M, Shen D Z and
Fan X W 2004 J. Vac. Sci. Technol. B 22 94
[3-4] Masanobu F, Katsuaki Y and Osamu T Thin Solid Films
317 322 (1998)
[3-5] Ohshima T, Ikegami T, Ebihara K, Asmussen J and Thareja R
2003 Thin Solid Films 435 49
[3-6] Yan Y F, Zhang S B, Pennycook S J and Pantelides S T
vol 666 p F2.6.1 (2001)
[3-7] Y. Yan, S. B. Zhang, and S. T. Pantelides, Phys. Rev. Lett. 86, 5723 (2001).
[3-8] S. Monticone, R. Tufen, and A. V. Kanaev, J. Phys. Chem. B 102, 2854 (1998).
[3-9] E. M. Wong and P. C. Searson, Appl. Phys. Lett. 74, 2939 (1999).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內立即公開,校外一年後公開 off campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code