Responsive image
博碩士論文 etd-0805110-190826 詳細資訊
Title page for etd-0805110-190826
論文名稱
Title
900 oC時 (001) 矽單晶在壓應力之下的硬化微結構分析
An analysis of the hardened microstructure in compression deformed (001) silicon single crystal at 900 oC
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-27
繳交日期
Date of Submission
2010-08-05
關鍵字
Keywords
差排、微觀結構、加工硬化階段
microstructure, dislocation, stages of work hardening
統計
Statistics
本論文已被瀏覽 5647 次,被下載 0
The thesis/dissertation has been browsed 5647 times, has been downloaded 0 times.
中文摘要
  本研究在 900 oC 的溫度條件之下對矽單晶之 (001) 面進行單軸壓縮實驗並透過光學顯微鏡及掃瞄式電子顯微鏡來觀察壓縮後的試片表面,且利用穿透式電子顯微鏡探討不同應變量的試片,並配合微觀結構的解析,瞭解其滑移系統、差排移動,加工硬化行為。
  眾所周知的,材料的機械性質隨著溫度產生變化,其強度逐漸地由室溫或低溫的脆性行為轉變成高溫的展性行為,在特定溫度或溫度區間呈現脆展性轉換 (brittle-to-ductile transition, BDT)。本實驗選擇矽在 BDT 溫度區間以上的溫度為實驗條件,在實驗過程中發現類似於金屬的加工硬化階段描述,並利用分析差排及滑移系統的結果推論出塑性變形時硬化進而破斷的行為。
  我們觀察到類似第二階段 (差排相互糾結) 以及第三階段 (dislocation cell structure) 的微結構形貌特徵,同時發現差排具多個滑移系統且差排大多屬於 sessile dislocation 並推測硬化並最後斷裂的原因。也在少量應變量時發現了 partial dislocation、dislocation pole形成。
Abstract
 In this study, the plastic deformation of (001) single crystal silicon at 900 oC is investigated by uniaxial compression along [001]. Using optical microscopy and scanning electron microscopy to observe the sample surface, and analysis the corresponding microstructure of different strain deformed silicon by transmission electron microscopy, particularly dislocation, slip systems and work hardening behaviour.
 Experimental temperature condition was chosen which over the BDT temperature range of silicon. We were found similar stages of work hardening described in metals and use the result of analysis dislocations and slip systems to suggest a hardening process of plastic deformation.
 The observations are similar to the feature in stage II (dislocation tangled) and stage III (dislocation cell structure). Partial dislocation and dipole are formed in less strained sample. We suggest a hardening process of plastic deformation from these results.
目次 Table of Contents
學位論文審定書
誌謝........................................................I
論文摘要...................................................II
Abstract..................................................III
目錄.......................................................IV
表目錄.....................................................VI
圖目錄....................................................VII
第一章 前言.................................................1
1.1 研究目的..............................................2
第二章 原理與文獻回顧.......................................3
2.1 矽的結構..............................................3
2.1.1 與鑽石結構相關的結晶結構..........................5
2.1.2 矽的脆展性轉換行為................................6
2.2 差排的形式............................................7
2.2.1 差排的分解........................................9
2.2.2 Peierls-Nabarro (PN) stress......................13
2.3 滑移系統與臨界分解剪應力.............................14
2.3.1 滑移系統 (Slip System)............................14
2.3.2 臨界分解剪應力 (Critical Resolved Shear Stress)..15
2.4 壓縮及拉伸變形時導致壓力軸向改變 (axis rotation).....17
2.4.1 壓縮及拉伸變形時的滑移系統改變...................18
2.5 應力應變曲線分析.....................................22
2.5.1 加工硬化 (work hardening)........................23
2.5.2 不同結構純金屬典型的應力應變曲線.................23
2.5.3 應力應變曲線相對應微結構.........................23
2.5.4 第四階段、第五階段...............................28
2.6 陶瓷的斷裂 (Fracture in Ceramics)....................29
2.7 差排產生的準則 (criterion)...........................31
2.8 脆展轉換溫度模型之運用...............................34
第三章 實驗步驟............................................39
3.1 Silicon 試片.........................................39
3.2 試片製備.............................................40
3.3 單軸壓縮試驗.........................................42
3.3.1 高溫壓縮試驗.....................................44
3.4 觀察設備及試片前處理.................................44
3.4.1 X光繞射分析 (XRD)................................44
3.4.2 光學顯微鏡 (OM)..................................45
3.4.3 掃描式電子顯微鏡 (SEM)...........................45
3.4.4 穿透式電子顯微鏡 (TEM)...........................46
第四章 實驗結果............................................48
4.1 試片晶向確認.........................................48
4.2 壓縮試片表面分析.....................................50
4.2.1 室溫條件.........................................50
4.2.2 溫度條件為 900 oC................................52
4.2.2.1 Slip Band 分析...............................52
4.2.2.2 Shear plane 分析.............................53
4.3 壓縮試片微結構分析...................................56
4.3.1 室溫下的試片觀察.................................56
4.3.2 900 oC 下應變量約 1% 的試片觀察..................57
4.3.2.1 部份差排.....................................62
4.3.2.2 dislocation dipole...........................67
4.3.3 900 oC 下應變量約 8% 的試片觀察..................68
4.3.4 900 oC 下應變量約 14% 的試片觀察.................74
第五章 討論................................................79
5.1 室溫壓縮試驗.........................................79
5.2 900 oC 試片表面分析..................................80
5.3 900 oC 應力應變曲線討論..............................81
5.4 900 oC TEM 微結構觀察................................82
5.4.1 試片B............................................82
5.4.2 試片C............................................83
5.4.3 試片D............................................83
第六章 結論................................................87
第七章 未來工作............................................88
參考資料...................................................89
附錄.......................................................95
參考文獻 References
[1]C. Kittel, “Introduction to Solid State Physics,” 7th Ed., Wiley, NY, 1996.
[2]D. Hull and D.J. Bacon, “Introduction to Dislocations,” 4th Ed., Butterworth-Heinemann, UK, 2001.
[3]Y.-M. Chiang, D.P. Birnie, III, and W.D. Kingery, “Physical Ceramics: Principles for Ceramic Science and Engineering,” John Wiley and Sons, NY, 1997.
[4]S.G. Roberts and J. Samuels, “The brittle-ductile transition in silicon. I. experiments,” Proc. R. Soc. Lond. A, 421 [1860] 1-23 (1989).
[5]P. Gumbsch, S. Taeri-Baghbadrani, D. Brunner, W. Sigle, and M. Rühle, “Plasticity and an Inverse Brittle-to-Ductile Transition in Strontium Titanate,” Phys. Rev. Lett., 87 [8] 085505-1-4 (2001).
[6]J. Rösler, H. Harders and M. Bäker, “Mechanical Behaviour of Engineering Materials,” Springer Berlin Heidelberg, NY, 2007.
[7]W.T. Read, Jr., “Dislocation in Crystals,” McGraw-Hill, NY, 1953.
[8]R.W.K. Honeycombe, “The Plastic Deformation of Metals,” 2nd Ed, Edward Arnold, UK, 1984.
[9]T.E. Mitchell, W.T. Donlon, and K.P.D. Lagerlöf, “Structure of Dislocations in Oxides”; pp. 125-39 in Deformation of Ceramic Materials II, Vol. 18. Edited by R.E. Tressler and R.C. Bradt. Plenum Press, NY, 1984.
[10]I.L.F. Ray and D.J.H. Cockayne, “The dissociation of dislocations in silicon,” Proc. R. Soc. Lond. A, 325 [1563] 543-54 (1971).
[11]K. Bowman, “Mechanical Behavior of Materials,” John Wiley and Sons, NY, 2004.
[12]R.E. Reed-Hill and R. Abbaschian, “Physical Metallurgy Principles,” 3rd Ed, PWS publishing, Boston, 1994.
[13]C.B. Carter and M.G. Norton, “Ceramic Materials: Science and Engineering,” Springer, 2007.
[14]P.B. Hirsch and T.E. Mitchell, “Dislocation structures in deformed single crystals and work-hardening theories”; pp. 65-91 in Work hardening Edit by J.P. Hirsch and J. Weertman, Gordon and Breach, NY, 1968.
[15]H. Mughrabi, “Investigations of plastically deformed copper single crystals in the stress-applied state. I. A study of the dislocation behaviour in the surface region and in the bulk,” phys. Stat. sol. (b), 39 [1] 317-27 (1970).
[16]F. Prinz and A.S. Argon, “Dislocation cell formation during plastic deformation of copper single crystals,” phys. stat. sol. (a), 57 [2] 741-53 (1980).
[17]H. Mughrabi, T. Ungár, W. Kienle and M. Wilkens, “Long-range internal stresses and asymmetric X-ray line-broadening in tensile-deformed [001]-orientated copper single crystals,” Philos. Mag. A., 53 [6] 793-813 (1986).
[18]W. Schröter and H. Siethöff, “New phenomena in the plasticity of semi-conductors and f.c.c. metals at high temperatures. Part II: Analysis of experimental data.,” Z. Metallkd., 75, 482-91 (1984).
[19]A.S. Argon and P. Haasen, “A new mechanism of work-hardening in the late stages of large strain plastic-flow in f.c.c. and diamond cubic crystals,” Acta Metall. Mater., 41 [11] 3289-306 (1993).
[20]M. Zehetbauer, T. Ungár, R. Kral, A. Borbély, E. Schafler, B. Ortner, H. Amenitsch, and S. Bernstorff, “Scanning X-ray diffraction peak profile analysis in deformed Cu-polycrystals by synchrotron radiation,” Acta Mater., 47 [3] 1053-61 (1999).
[21]P.N.B. Anongba, J. Bonneville and J.L. Martin, “Hardening stages of [112] copper single crystals at intermediate and high temperatures - I. Mechanical behaviour,” Acta Metall. Mater., 47 [10] 2897-906 (1993).
[22]P.N.B. Anongba, J. Bonneville and J.L. Martin, “Hardening stages of [112] copper single crystals at intermediate and high temperatures - II. Slip systems and microstructures,” Acta Metall. Mater., 47 [10] 2907-22 (1993).
[23]M. Meyers and K. Chawla, “Mechanical Behavior of Materials,” 2nd Ed., Cambridge University Press, UK, 2009.
[24]M.F. Ashby and S.D. Hallam, “The failure of brittle solids containing small cracks under compressive stress states,” Acta. Metall., 34 [3] 497-510 (1986).
[25]Rui-Huan Zhao, Shu-Ho Dai and J.C.M. Li, “Dynamic emission of dislocations from a crack tip - a computer simulation,” Int. J. Fracture., 29 [1] 3-20 (1985).
[26]S.-J. Chang and S.M. Ohr, “Dislocation-free zone model of fracture,” J. Appl. Phys., 52 [12] 7174-81 (1981).
[27]J.R. Rice and R. Thomson, “Ductile versus brittle behaviour of crystals,” Philos. Mag., 29 [1] 73-97 (1974).
[28]S.G. Roberts, P.B. Hirsch, A.S. Booth, M. Ellis and F.C. Serbena, “Dislocations, cracks and brittleness in single crystals,” Phys. Scripta, T49, 420-26 (1993).
[29]P.B. Hirsch, S.G. Roberts and J. Samuels, “The brittle-ductile transition in silicon. II. interpretation,” Proc. R. Soc. Lond. A, 421 [1860] 25-53 (1989).
[30]M. Brede, “The brittle-to-ductile transition in silicon,” Acta Metall. Mater., 41 [1] 211-28 (1993).
[31]S.G. Roberts, H.S. Kim and P.B. Hirsch, Proc. Ninth Intl. Conf. on the Strength of Metals and Alloys, Haifa, July 1991. Edited by D.G. Brandon, R. Chaim and A. Rosen, Freund Publishing, London, 1991, p783.
[32]M.D. Ellis, “The brittle–ductile transition in molybdenum,” D. Phil. Thesis, University of Oxford, 1991.
[33]C. St. John, “The brittle-to-ductile transition in pre-cleaved silicon single crystals,” Philos. Mag., 32 [6] 1193-1212 (1975).
[34]G. Michot and A. George, “In situ observation by X-ray synchrotron topography of the growth of plastically deformed regions around crack tips in silicon under creep conditions,” Scripta Metall., 16 [5] 519-24 (1982).
[35]G. Michot and A. George, “Fracture and crack tip plasticity in silicon and gallium
arsenide,” in: S.G. Roberts, D.B. Holt, P.R. Wilshaw (Eds.), Structure and Properties of Dislocations in Semiconductors 1989, Institute of Physics Publications, Bristol, UK, 1989, Conference Series No. 104, p.385.
[36]P.B. Hirsch and S.G. Roberts, “The dynamics of edge dislocation generation along a plane orthogonal to a mode I crack,” Scripta Metall., 23 [6] 925-30 (1989).
[37]V. Lakshmanan, and J.C.M. Li, “Edge dislocations emitted along inclined planes from a mode I crack,” Mater. Sci. Eng. A., 104, 95-104 (1988).
[38]S.A. Galloway, P. Miller, P. Thomas and R. Harmon, “Advances in Cathodoluminescence Characterisation of Compound Semiconductors with Spectrum Imaging,” phys. stat. sol. (c), 0 [3] 1028-32 (2003).
[39]P.B. Hirsch and S.G. Roberts, “The brittle-ductile transition in silicon,” Philos. Mag. A, 64 [1] 55-80 (1991).
[40]H. Azzouzzi, G. Michot, and A. George, Proc. Ninth Intl. Conf. on the Strength of Metals and Alloys, Haifa, July 1991. Edited by D.G. Brandon, R. Chaim and A. Rosen, Freund Publishing, London, 1991, p317.
[41]J.C. Newman, Jr. and I.S. Raju, “An empirical stress-intensity factor equation for the surface crack,” Eng. Fract. Mech., 15 [1-2] 185-92 (1981).
[42]A. George and J. Rabier, “Dislocations and plasticity in semiconductors. I – Dislocation structures and Dynamics,” Revue Phys. Appl., 22 [9] 941-66 (1987).
[43]F. Prinz, A.S. Argon and W.C. Moffatt, “Recovery of dislocation structures in plastically deformed copper and nickel single crystals,” Acta metall., 30 [4] 821-30 (1982).
[44]F.J. Humphreys and M. Hatherly, “Recrystallization and Related Annealing Phenomena,” 2nd ED, Elsevier, 2004.
[45]B.D. Cullity and S.R. Stock, “Elements of X-Ray Diffraction,” 3rd Ed., Prentice Hall, New Jersey, 2001.
[46]N. Maluf and K. Williams, “An Introduction to Microelectromechanical Systems Engineering,” 2nd Ed., Artech House, Boston, 2004.
[47]M.H. Loretto and R.E. Smallman, “Defect Analysis in Electron Analysis,” Chapman and Hall, London, UK, 1976.
[48]V. Illingworth, “Penguin Dictionary of Physics,” 4th ED, Penguin Books, UK, 2009.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.191.5.239
論文開放下載的時間是 校外不公開

Your IP address is 18.191.5.239
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code