Responsive image
博碩士論文 etd-0805111-154640 詳細資訊
Title page for etd-0805111-154640
論文名稱
Title
利用乳化型釋碳基質提昇三氯乙烯污染地下水之生物降解效率:現地模場試驗
Bioremediation of TCE-contaminated groundwater using emulsified carbon-releasing substrate: a pilot-scale study
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-06
繳交日期
Date of Submission
2011-08-05
關鍵字
Keywords
菌相分析、現地生物整治、透水性反應牆、乳化型釋碳基質、三氯乙烯
trichloroethylene, permeable reactive barrier, microbial analysis, in situ bioremediation, emulsified carbon-releasing substrate
統計
Statistics
本論文已被瀏覽 5673 次,被下載 0
The thesis/dissertation has been browsed 5673 times, has been downloaded 0 times.
中文摘要
含氯有機溶劑常被廣泛應用於脫脂、電子零件清洗及乾洗等工業製程中,其中以三氯乙烯(trichloroethylene, TCE)及四氯乙烯(tetrachloroethene, PCE)為國內外最具代表性之含氯有機溶劑。在土壤與地下水中為常見的污染物,且在地下水中因其特性而常以比水重之非水相液體(dense non-aqueous phase liquid, DNAPL)存在難以整治。本研究成功研發一種可緩慢釋放碳源及營養物質,用以提升受TCE污染之地下水生物降解效率,而緩慢釋碳基質其中成分包含大豆油(慢速分解基質)、乳酸鹽(快速分解基質)、生物可分解界面活性劑(Simple Green及卵磷脂)以及維他命,經乳化後可達90%以上乳化效果,且較易擴散於土壤孔隙間,並且能長時間提供微生物行厭氧還原脫氯所需之碳及營養物質。本研究利用自行研發乳化型釋碳基質灌注於南台灣一主要受TCE污染之場址,並結合生物透水性整治牆的概念,加強本場址內TCE生物還原脫氯作用,以防止污染源向下游傳輸擴散。由監測井之採樣分析結果可知,本場址之TCE濃度介於0.03-0.10 mg/L之間。由污染量及水文等相關資料之評估,在上游設置三口井(BW1-1、BW1-1e及BW1-1w)分別直接灌注40 L基質方式做為整治之用,下游設置三口井(C029、C029e及C029w)做為成效評估之用。由地質化學反應得知,溶氧低於0.5 mg/L及氧化還原電位呈現還原態,本研究注入之乳化型釋碳基質可持續緩慢釋出碳源及營養物質,此外厭氧生物反應最終伴隨甲烷化反應,甲烷濃度有上升趨勢,以及醋酸濃度上升且未累積,證實模場中地下水環境呈現厭氧還原狀態。總菌數部分,注入井BW1-1之總菌數以及其餘監測井C029、C029e及C029w之總菌數皆有增加,由此可知乳化型釋碳基質確實可促進微生物生長,使地下水注入區下游地區總菌數呈現增加趨勢。模場試驗結果顯示注入乳化型釋碳基質,上游三口監測井(BW1-1、BW1-1e及BW1-1w)之TCE濃度降解效率分別為93.8%、86.7%及6.25%,監測結果亦顯示於注入後之第五天開始下游監測井測得TCE被微生物分解之副產物順1,2-二氯乙烯(cis1,2-DCE, cDCE)及氯乙烯(vinyl chloride, VC),其濃度分別為0.002-0.010 mg/L及0.2-0.5 mg/L。並藉由菌相分析法偵測結果可知,現地具有Ralstonia sp.、Clostridium sp.、Uncultured Burkholderiales bacterium、Hydrogenophaga sp.、Acidovorax sp.、Zoogloea sp.、Hydrocarboniphaga sp.、Uncultured Curvibacter sp.、Pseudomonas sp.、Comamonas sp.、Aquabacterium sp.、Variovorax strains等具有降解含氯有機物效果之菌種。由微水試驗結果可知,上游各井注入基質前後透水係數差異甚小,顯示現地添加乳化型釋碳基質,並未造成現場地下水井阻塞。以成本評估模式評估一年的經費為USD13,442 (約NTD389,818),單位處理費用為173.62 USD/m3。顯示本研究自行配製之乳化型釋碳基質為良好緩釋性物質,且具有長時效供應現地微生物生長之營養鹽降解目標污染物,並符合綠色整治減少二次污染,本研究之效果以提供未來相關整治場址之參考依據。
Abstract
Soil and groundwater at many existing and former industrial areas and disposal sites is contaminated by halogenated organic compounds that were released into the environment. Halogenated organic compounds are heavier than water. When they are released into the subsurface, they tend to adsorb onto the soils and cause the appearance of DNAPL (dense-non-aqueous phase liquid) pool. Among those halogenated organic compounds, trichloroethylene (TCE), a human carcinogen, is one of the commonly observed contaminants in groundwater. Thus, TCE was used as the target compound in this study. The objective of this study was to develop the emulsified carbon-releasing substrate and apply it as the filling material in the permeable reactive barrier to remediate TCE-contaminated groundwater. In this study, the developed emulsified carbon-releasing substrate contained soybean oil, lactate, biodegradable surfactant (Simple GreenTM and lecithin), and nutrients. Results of emulsion test show that up to 90% of the emulsified carbon-releasing substrate was distributed effectively in the soil pores. The emulsified carbon-releasing substrate was able to provide carbon for the enhancement of in situ anaerobic biodegradation for a long period of time. A pilot-scale study was operated at a TCE-contaminated site located in southern Taiwan. Emulsified carbon-releasing substrate emulsion was pressure-injected into the remediation wells. A total of 120 L of emulsified carbon-releasing substrate was injected into the test site. Based on the groundwater analytical results, dissolved oxygen, oxidation-reduction potential, and sulfate concentrations decreased after injection. However, the anaerobic degradation byproduct, acetic acid, increased after injection. Results also show that the total viable bacteria increased in the upgradient injection (remediation) well. Decrease in TCE concentration (dropped to below 0.01 mg/L) was also observed after substrate injection, and TCE degradation byproducts, cis-1,2-dichloroethene (cDCE) and vinyl chloride (VC) were also observed. Result of microbial analyses show that various TCE-degrading bacteria exist in the groundwater samples including Ralstonia sp., Clostridium sp., Uncultured Burkholderiales bacterium, Hydrogenophaga sp., Acidovorax sp., Zoogloea sp., Hydrocarboniphaga sp., Uncultured Curvibacter sp., Pseudomonas sp., Comamonas sp., Aquabacterium sp., and Variovorax strains. This reveals that the anaerobic dechlorination of TCE is a feasible technology at this site. Slug test result show that only a slight variation in soil permeability of the injection well was observed. This indicates that the substrate injection would not cause clogging of the soil pores. Results from the cost analysis show that the total cost for the test site remediation was approximately USD13,442 per year. This indicates that the developed system has the potential to be developed into an environmentally, economically, and naturally acceptable remedial technology. Knowledge obtained from this study will aid in designing a carbon-released substrate biobarrier system for site remediation.
目次 Table of Contents
謝誌 i
摘要 ii
Abstract iv
目錄 vi
圖目錄 viii
表目錄 x
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
2.1 土壤及地下水氯化碳氫化合物污染概況 3
2.1.1 含氯碳氫化合物污染概述 3
2.1.2 三氯乙烯之性質及管制標準 6
2.1.3 三氯乙烯之傳輸 10
2.2土壤與地下水整治技術發展趨勢 15
2.2.1 地下水生物整治技術 16
2.2.2 綠色整治技術 20
2.3 三氯乙烯生物反應機制 22
2.3.1 三氯乙烯好氧共代謝反應機制 22
2.3.2 三氯乙烯厭氧還原脫氯反應機制 26
2.4乳化型基質加強生物之整治牆 28
2.5利用乳化型釋碳基質做為厭氧還原脫氯作用之類似場址研究 32
第三章 研究方法、材料與架構 35
3.1 實驗架構 35
3.2 材料與方法 36
3.2.1 藥品材料 36
3.2.2 實驗設備 36
3.3 乳化型釋碳基質之合成 37
3.4 現地場址背景介紹 39
3.5 現地模場試驗 47
3.5.1 水文地質調查 47
3.5.2 現場作業及採樣方式 50
3.6 分析方法 51
3.6.1 污染物分析方法 51
3.6.2 水質分析方法 51
3.6.3 菌相分析方法 54
3.7 Mann-Kendall 模式 57
3.8 成本模式 59
第四章 結果與討論 61
4.1 生物復育現地場址指標性參數變化 61
4.2 電子接受者及供給者分析 65
4.3 三氯乙烯及副產物降解趨勢分析 77
4.4 菌相分析法偵測結果 82
4.5水力傳導係數 94
4.6 整治費用評估 96
第五章 結論與建議 99
5.1 結論 99
5.2 建議 101
參考文獻 103

參考文獻 References
行政院環保署,(2008) 土壤污染管制標準,環署土字第0970031435 號令。
行政院環保署,(2009) 地下水污染管制標準,環署土字第0980003647 號令。
行政院環境保護署,(2010) 土壤及地下水污染整治十年有成專刊,土壤及地下水污染整治基金管理會。
行政院環保署土壤及地下整治網,(2011) (http://sgw.epa.gov.tw/public/0401.asp)。
林耀東、張書奇、游宇涵、陳姿文,(2010) 奈米乳化液在地下水層中傳輸模擬探討。
陳家洵,(2008) 地下水之染問題之探討,Newsletter 應倫通訊 第三期 公害專題。
陳逸明,(2010) 以乳化型基質處理受三氯乙烯污染之地下水,國立中山大學 環境工程研究所 碩士論文。
曾士豪,(2009) 應用現地生物復育技術整治受三氯乙烯污染之地下水,國立中山大學 環境工程研究所 碩士論文。
勞工安全衛生研究所,(2010) 職場三氯乙烯容許標準建議值文件 https://www.iosh.gov.tw/Default.aspx。
經濟部工業局,(2007) 石油碳氫化合物土壤及地下水污染預防與整治技術手冊。
梁書豪、高志明、葉琮裕、陳逸明、楊瑞興、何曉蓉,(2010) 以乳化型釋氫基質處理受三氯乙烯污染之地下水,環境科技論壇,第8-1-8-14頁。
劉振宇,(2002) 氧化/還原下之現地生物整治,第五期台灣土壤及地下水環境保護協會簡訊,第3-5頁。
劉瑋晨,(2009) 以基因分析法評估三氯乙烯污染地下水之微生物整治成效,國立中山大學 環境工程研究所 碩士論文。
簡華逸,(2010) 應用現地生物整治技術去除三氯乙烯污染之地下水,國立中山大學 環境工程研究所 博士論文。
Adrian, L., Szewzyk, U., Wecke, J., Gorisch, H. (2000) Bacterial dehalorespiration with chlorinated benzenes, Nature, 408(6812), 580-583.
Alvarez-Cohen, L., Speitel, G. E. (2001) Kinetics of aerobic cometabolism of chlorinated solvents, Biodegradation, 12(2), 105-126.
Arp, D. J., Yeager, C. M., Hyman, M. R. (2001) Molecular and cellular fundamentals of aerobic cometabolism of trichloroethylene, Biodegradation, 12(2), 81-103.
Aulenta, F., Majone, M., Verbo, P., Tandoi, V. (2002) Complete dechlorination of tetrachloroethene to ethene in presence of methanogenesis and acetogenesis by an anaerobic sediment microcosm. Biodegradation, 13(6), 411-424.
Adamson, D. T., McDade, J. M., Hughes, J. B. (2003) Inoculation of DNAPL source zone to initiate reductive dechlorination of PCE, Environ. Sci. Technol., 37(11), 2525-2533.
AFCEE, (2007) Protocol for in situ bioremediation of chlorinated solvents using edible oil. Environmental Science Division Technology Transfer Outreach Office.
Aulenta, F., Pera, A., Rossetti, S., Papini, M. P., Majone, M. (2007) Relevance of side reactions in anaerobic reductive dechlorination microcosms amended with different electron donors, Water Res., 41(1), 27-38.
Azizian, M. F., Istok, J. D., Semprini, L. (2007) Evaluation of the in-situ aerobic cometabolism of chlorinated ethenes by toluene-utilizing microorganisms using push-pull tests, J. Contam. Hydrol., 90(1-2), 105-124.
Aulenta, F., Fuoco, M., Canosa, A., Papini, M. P., Majone, M. (2008) Use of poly-beta-hydroxy-butyrate as a slow-release electron donor for the microbial reductive dechlorination of TCE, Water Sci. Technol., 57(6), 921-925.
Bolster, C. H., Hornberger, G. M., Mills, A. L., Wilson, J. L. (1998) A method for calculating bacterial deposition coefficient using the fraction of bacteria recovered from laboratory columns, Environ. Sci. Technol., 32(9), 1329-1332.
Berkowitz, B., Cortis, A., Dentz, M., Scher, H. (2006) Modeling non-Fickian transport in geological formations as a continuous time random walk, Rev. Geophys., 44(2), 49.
Borden, R. C. (2006) Protocol for enhanced in situ bioremediation using emulsified edible oil. Industrial & Environmental Services.
Bhatt, P., Kumar, M. S., Mudliar, S., Chakrabarti, T. (2007) Biodegradation of chlorinated compounds - A review, Crit. Rev. Environ. Sci. Technol., 37(2), 165-198.
Borden, R. C. (2007) Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier, J. Contam. Hydrol., 94(1-2), 13-33.
Borden, R. C. (2007) Effective distribution of emulsified edible oil for enhanced anaerobic bioremediation, J. Contam. Hydrol., 94(1-2), 1-12.
Chhabra, R. P., Bangun, J. (1997) Wall effects on terminal velocity of small drops in Newtonian and non-Newtonian fluids, Can. J. Chem. Eng., 75(5), 817-822.
Chhabra, V., Free, M. L., Kang, P. K., Truesdail, S. E., Shah, D. O. (1997) Microemulsions as an emerging technology, Tenside Surfactants Detergents, 34(3), 156.
Chang, Y. C., Okeke, B. C., Hatsu, M., Takamizawa, K. (2001) In vitro dehalogenation of tetrachloroethylene (PCE) by cell-free extracts of Clostridium bifermentans DPH-1, Bioresource Technology, 78(2), 141-147.
Costa, C., Jesus-Rydin, C. (2001) Site investigation on heavy metals contaminated ground in Estarreja – Portugal, Eng. Geol., 60(1-4), 39-47.
Coulibaly, K. M., Borden, R. C. (2004) Impact of edible oil injection on the permeability of aquifer sands, J. Contam. Hydrol., 71(1-4), 219-237.
Coulibaly, K. M., Long, C. M., Borden, R. C. (2006) Transport of edible oil emulsions in clayey sands: One-dimensional column results and model development, J. Hydrol. Eng., 11(3), 230-237.
Chen, Y. M., Lin, T. F., Huang, C., Lin, J. C., Hsieh, F. M. (2007) Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida, J. Hazard. Mater., 148(3), 660-670.
Cortis, A., Ghezzehei, T. A. (2007) On the transport of emulsions in porous medi,. J. Colloid Interface Sci., 313(1), 1-4.
Debruin, W. P., Kotterman, M. J. J., Posthumus, M. A., Schraa, G., Zehnder, A. J. B. (1992) Complete biological reductive transformation of tetrachloroethene to ethane, Appl. Environ. Microbiol., 58(6), 1996-2000.
Da Silva, M. L. B., Daprato, R. C., Gomez, D. E., Hughes, J. B., Ward, C. H., Alvarez, P. J. J. (2006) Comparison of bioaugmentation and biostimulation for the enhancement of dense nonaqueous phase liquid source zone bioremediation, Water Environ. Res., 78(13), 2456-2465.
Duhamel, M., Edwards, E. A. (2006) Microbial composition of chlorinated ethene-degrading cultures dominated by Dehalococcoides, FEMS Microbiol. Ecol., 58(3), 538-549.
Ellis, D. E., Lutz, E. J., Odom, J. M., Buchanan, R. J., Bartlett, C. L., Lee, M. D., Harkness, M. R., Deweerd, K. A. (2000) Bioaugmentation for accelerated in situ anaerobic bioremediation, Environ. Sci. Technol., 34(11), 2254-2260.
Environment Agency, (2003) An illustrated handbook of DNAPL transport and fate in the subsurface.
Freedman, D. L., Gossett, J. M. (1989) Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions, Appl. Environ. Microbiol., 55(9), 2144-2151.
Fennell, D. E., Carroll, A. B., Gossett, J., M.Zinder, S. H. (2001) Assessment of indigenous reductive dechlorinating potential at a TCE-contaminated site using microcosms, polymerase chain reaction analysis, and site data, Environ. Sci. Technol., 35(9), 1830-1839.
Fuller, M. E., Hatzinger, P. B., Rungmakol, D., Schuster, R. L., Steffan, R. J. (2004) Enhancing the attenuation of explosives in surface soils at military facilities: Combined sorption and biodegradation, Environ. Toxicol. Chem., 23(2), 313-324.
Futamata, H., Nagano, Y., Watanabe, K., Hiraishi, A. (2005) Unique kinetic properties of phenol-degrading Variovoyax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture, Appl. Environ. Microbiol., 71(2), 904-911.
Frascari, D., Pinelli, D., Nocentini, M., Zannoni, A., Fedi, S., Baleani, E., Zannoni, D., Farneti, A., Battistelli, A. (2006) Long-term aerobic cometabolism of a chlorinated solvent mixture by vinyl chloride-, methane- and propane-utilizing biomasses, J. Hazard. Mater., 138(1), 29-39.
Fletcher, K. E., Ritalahti, K. M., Pennell, K. D., Takamizawa, K., Loffler, F. E. (2008) Resolution of culture Clostridium bifermentans DPH-1 into two populations, a Clostridium sp and tetrachloroethene-dechlorinating Desulfitobacterium hafniense strain JH1, Appl. Environ. Microbiol., 74(19), 6141-6143.
Holliger, C., Wohlfarth, G., Diekert, G. (1998) Reductive dechlorination in the energy metabolism of anaerobic bacteria, FEMS Microbiol. Rev., 22(5), 383-398.
Hunter, W. J. (2001) Use of vegetable oil in a pilot-scale denitrifying barrier, J. Contam. Hydrol., 53(1-2), 119-131.
Hunter, W. J. (2002) Bioremediation of chlorate or perchlorate contaminated water using permeable barriers containing vegetable oil, Cur. Microbiol., 45(4), 287-292.
He, J. Z., Sung, Y., Dollhopf, M. E., Fathepure, B. Z., Tiedje, J. M., Loffler, F. E. (2002) Acetate versus hydrogen as direct electron donors to stimulate the microbial reductive dechlorination process at chloroethene-contaminated sites, Environ. Sci. Technol., 36(18), 3945-3952.
Hendrickson, E. R., Payne, J. A., Young, R. M., Starr, M. G., Perry, M. P., Fahnestock, S., Ellis, D. E., Ebersole, R. C. (2002) Molecular analysis of Dehalococcoides 16S ribosomal DNA from chloroethene-contaminated sites throughout north America and Europe, Appl. Environ. Microbiol., 68(2), 485-495.
Hollibaugh, J. T., Bano, N., Ducklow, H. W. (2002) Widespread distribution in polar oceans of a 16S rRNA gene sequence with affinity to Nitrosospira-like ammonia-oxidizing bacteria, Appl. Environ. Microbiol., 68(3), 1478-1484.
He, J. Z., Ritalahti, K. M., Yang, K. L., Koenigsberg, S. S., Loffler, F. E. (2003) Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium, Nature, 424(6944), 62-65.
Hageman, K. J., Field, J. A., Istok, J. D. Semprini, L. (2004) Quantifying the effects of fumarate on in situ reductive dechlorination rates, J. Contam. Hydrol., 75(3-4), 281-296.
He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K. M., Loffler, F. E. (2005) Isolation and characterization of Dehalococcoides sp strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe, Environmental Microbiology, 7(9), 1442-1450.
Heimann, A. C., Friis, A. K., Jakobsen, R. (2005) Effects of sulfate on anaerobic chloroethene degradation by an enriched culture under transient and steady-state hydrogen supply, Water Res., 39(15), 3579-3586.
Hunter, W. J. (2005) Injection of innocuous oils to create reactive barriers for bioremediation: Laboratory studies, J. Contam. Hydrol., 80(1-2), 31-48.
Hunter, W. J. (2006) Removing selenate from groundwater with a vegetable oil-based biobarriers, Cur. Microbiol., 53(3), 244-248.
Halsey, K. H., Doughty, D. M., Sayavedra-Soto, L. A., Bottomley, P. J., Arp, D. J. (2007) Evidence for modified mechanisms of chloroethene oxidation in Pseudomonas butanovora mutants containing single amino acid substitutions in the hydroxylase alpha-subunit of butane monooxygenase, J. Bacteriol., 189(14), 5068-5074.
Han, Y. L., Kuo, M. C. T., Tseng, I. C., Lu, C. J. (2007) Semicontinuous microcosm study of aerobic cometabolism of trichloroethylene using toluene, J. Hazard. Mater., 148(3), 583-591.
Hunter, W. J., Shaner, D. L. (2009) Nitrogen limited biobarriers remove atrazine from contaminated water: Laboratory studies, J. Contam. Hydrol., 103(1-2), 29-37.
Isalou, M., Sleep, B. E., Liss, S. N. (1998) Biodegradation of high concentrations of tetrachloroethene in a continuous flow column system, Environ. Sci. Technol., 32(22), 3579-3585.
Ishida, H., Nakamura, K. (2000) Trichloroethylene degradation by Ralstonia sp KN1-10A constitutively expressing phenol hydroxylase: Transformation products, NADH limitation, and product toxicity, Journal of Bioscience and Bioengineering, 89(5), 438-445.
ITRC (The Interstate Technology & Regulatory Council), (2005) Permeable Reactive Barriers: Lessons Learned/New Directions.
ITRC (The Interstate Technology & Regulatory Council), (2005) Technical and Regulatory Guidance for In Situ Chemical Oxidation 2nd Ed.
ITRC (The Interstate Technology & Regulatory Council), (2007) In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones: Case Studies.
ITRC (The Interstate Technology & Regulatory Council), (2008) In Situ Bioremediation of Chlorinated Ethene DNAPL Source Zones.
Janssen, P. H., van den Broek, W., Harris, C. K. (2001) Laboratory study investigating emulsion formation in the near-wellbore region of a high water-cut oil well, Spe Journal, 6(1), 71-79.
Jung, Y., Coulibaly, K. M., Borden, R. C. (2006) Transport of edible oil emulsions in clayey sands: 3D sandbox results and model validation, J. Hydrol. Eng., 11(3), 238-244.
Jang, W. Y., Aral, M. M. (2008) Effect of biotransformation on multispecies plume evolution and natural attenuation, Transp. Porous Media., 72(2), 207-226.
Kao, C. M., Prosser, J. (1999) Intrinsic bioremediation of trichloroethylene and chlorobenzene: field and laboratory studies, J. Hazard. Mater., 69(1), 67-79.
Kao, C. M., Yang, L. (2000) Enhanced bioremediation of trichloroethene contaminated by a biobarrier system, Water Sci. Technol., 42(3-4), 429-434.
Kageyama, C., Ohta, T., Hiraoka, K., Suzuki, M., Okamoto, T., Ohishi, K. (2005) Chlorinated aliphatic hydrocarbon-induced degradation of trichloroethylene in Wautersia numadzuensis sp nov, Arch. Microbiol., 183(1), 56-65.
Kocamemi, B. A., Cecen, F. (2005) Cometabolic degradation of TCE in enriched nitrifying batch systems, J. Hazard. Mater., 125(1-3), 260-265.
Kim, Y., Istok, J. D., Semprini, L. (2006) Push-pull tests evaluating in situ aerobic cometabolism of ethylene, propylene, and cis-1,2-dichloroethylene, J. Contam. Hydrol., 82(1-2), 165-181.
Kwon, T. S., Yang, J. S., Baek, K., Lee, J. Y., Yang, J. W. (2006) Silicone emulsion-enhanced recovery of chlorinated solvents: Batch and column studies, J. Hazard. Mater., 136(3), 610-617.
Kim, Y., Istok, J. D., Semprini, L. (2008) Single-well, gas-sparging tests for evaluating the in situ aerobic cometabolism of cis-1,2-dichloroethene and trichloroethene, Chemosphere, 71(9), 1654-1664.
Kocamemi, B. A., Cecen, F. (2010) Biological removal of the xenobiotic trichloroethylene (TCE) through cometabolism in nitrifying systems, Bioresource Technology, 101(1), 430-433.
Lalman, J. A., Bagley, D. M. (2000) Anaerobic degradation and inhibitory effects of linoleic acid, Water Res., 34(17), 4220-4228.
Loffler, F. E., Sun, Q., Li, J. R., Tiedje, J. M. (2000) 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species, Appl. Environ. Microbiol., 66(4), 1369-1374.
Lalman, J. A., Bagley, D. M. (2001) Anaerobic degradation and methanogenic inhibitory effects of oleic and stearic acids, Water Res., 35(12), 2975-2983.
Lackey, L. W., Gamble, J. R., Boles, J. L. (2002) Bench-scale evaluation of a biofiltration system used to mitigate trichloroethylene contaminated air streams, Advances in Environmental Research, 7(1), 97-104.
Libiseller, C., Grimvall, A. (2002) Performance of partial Mann-Kendall tests for trend detection in the presence of covariates, Environmetrics, 13(1), 71-84.
Lieberman, M. T., Borden, R. C., Zawtocki, C., May, I., Casey, C. (2005) Long term TCE source area remediation using short term emulsified oil substrate (EOS®) recirculation, The 21st Annual International Conference on Soils, Sediments, and Water, University of Massachusetts at Amherst, 17-20.
Lindow, N. L., Borden, R. C. (2005) Anaerobic bioremediation of acid mine drainage using emulsified soybean oil, Mine Water and the Environment, 24, 199-208
Long, C. M., Borden, R. C. (2006) Enhanced reductive dechlorination in columns treated with edible oil emulsion, J. Contam. Hydrol., 87(1-2), 54-72.
Lee, G. T., Ro, H. M., Lee, S. M. (2007) Effects of triethyl phosphate and nitrate on electrokinetically enhanced biodegradation of diesel in low permeability soils, Environ. Technol., 28(8), 853-860.
Lee, M. H., Clingenpeel, S. C., Leiser, O. P., Wymore, R. A., Sorenson, K. S., Watwood, M. E. (2008) Activity-dependent labeling of oxygenase enzymes in a trichloroethene-contaminated groundwater site, Environ. Pollut., 153(1), 238-246.
MaymoGatell, X., Chien, Y. T., Gossett, J. M., Zinder, S. H. (1997) Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethane, Science, 276(5318), 1568-1571.
Morono, Y., Unno, H., Hori, K. (2006) Correlation of TCE cometabolism with growth characteristics on aromatic substrates in toluene-degrading bacteria, Biochem. Eng. J, 31(3), 173-179.
Mera, N., Iwasaki, K. (2007) Use of plate-wash samples to monitor the fates of culturable bacteria in mercury- and trichloroethylene-contaminated soils, Appl. Microbiol. Biotechnol., 77(2), 437-445.
Miller, T. R., Franklin, M. P., Halden, R. U. (2007) Bacterial community analysis of shallow groundwater undergoing sequential anaerobic and aerobic chloroethene biotransformation, FEMS Microbiol. Ecol., 60(2), 299-311.
Mattes, T. E., Alexander, A. K., Coleman, N. V. (2010) Aerobic biodegradation of the chloroethenes: pathways, enzymes, ecology, and evolution, FEMS Microbiol. Rev., 34(4), 445-475.
Mendoza-Sanchez, I., Autenrieth, R. L., McDonald, T. J., Cunningham, J. A. (2010) Effect of pore velocity on biodegradation of cis-dichloroethene (DCE) in column experiments, Biodegradation, 21(3), 365-377.
Novak, J. M., Szogi, A. A., Watts, D. W., Busscher, W. J. (2007) Water treatment residuals amended soils release Mn, Na, S, and C. Soil, Science, 172(12), 992-1000.
Nishimura, M., Ebisawa, M., Sakihara, S., Kobayashi, A., Nakama, T., Okochi, M., Yohda, M. (2008) Detection and identification of Dehalococcoides species responsible for in situ dechlorination of trichloroethene to ethene enhanced by hydrogen-releasing compounds, Biotechnol. Appl. Biochem., 51(1), 1-7.
Paul, B. K., Moulik, S. P. (1997) Microemulsions: An overview, J. Dispers. Sci. Technol., 18(4), 301-367.
Palleroni, N. J., Port, A. M., Chang, H. K., Zylstra, G. J. (2004) Hydrocarboniphaga effusa gen. nov., sp nov., a novel member of the gamma-Proteobacteria active in alkane and aromatic hydrocarbon degradation, Int J Syst Evol Microbiol., 54(4), 1203-1207.
Pfiffner, S. M., Palumbo, A. V., Sayles, G. D., Gannon, D. (2004) Microbial population and degradation activity changes monitored during a chlorinated solvent biovent demonstration, Ground Water Monit. Remediat., 24(3), 102-110.
Pant, P., Pant, S. (2010) A review: Advances in microbial remediation of trichloroethylene (TCE), Journal of Environmental Sciences-China, 22(1), 116-126.
Revesz, S., Sipos, R., Kende, A., Rikker, T., Romsics, C., Meszaros, E., Mohr, A., Tancsics, A., Marialigeti, K. (2006) Bacterial community changes in TCE biodegradation detected in microcosm experiments, International Biodeterioration & Biodegradation, 58(3-4), 239-247.
Rivett, M. O., Clark, L. (2007) A quest to locate sites described in the world's first publication on trichloroethene contamination of groundwater, Quarterly Journal of Engineering Geology and Hydrogeology, 40(3), 241-249.
Ray, S., Chowdhury, N., Lalman, J. A., Seth, R., Biswas, N. (2008) Impact of initial pH and linoleic acid (C18 : 2) on hydrogen production by a mesophilic anaerobic mixed culture, Journal of Environmental Engineering-Asce, 134(2), 110-117.
Soo, H., Radke, C. J. (1986) A filtration model for the flow of dilute, stable emulsions in porous-media .1. theory, Chem. Eng. Sci., 41(2), 263-272.
Soo, H., Williams, M. C., Radke, C. J. (1986) A filtration model for the flow of dilute, stable emulsions in porous-media .2. parameter evaluation and estimation, Chem. Eng. Sci., 41(2), 273-281.
Snow D. H. (1999) Overview of Permeable Reactive Barriers.
Seghers, D., Bulcke, R., Reheul, D., Siciliano, S. D., Top, E. M., Verstraete, W. (2003) Pollution induced community tolerance (PICT) and analysis of 16S rRNA genes to evaluate the long-term effects of herbicides on methanotrophic communities in soil, Eur. J. Soil Sci., 54(4), 679-684.
Solutions IES, Inc. (Solutions IES), (2006) Edible Oil Barriers for Treatment of Perchlorate Contaminated Groundwater. Prepared for the Environmental Security Technology Certification Program.
Sung, Y., Fletcher, K. F., Ritalaliti, K. M., Apkarian, R. P., Ramos-Hernandez, N., Sanford, R. A., Mesbah, N. M., Loffler, F. E. (2006) Geobacter lovleyi sp nov strain SZ, a novel metal-reducing and tetrachloroethene-dechlorinating bacterium, Appl. Environ. Microbiol., 72(4), 2775-2782.
Shenl, H., Adair, C., Wilson, J. T. (2010) Long-Term Capacity of Plant Mulch to Remediate Trichloroethylene in Groundwater, Journal of Environmental Engineering-Asce, 136(10), 1054-1062.
Tufenkji, N., Elimelech, M. (2004) Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media, Environ. Sci. Technol., 38(2), 529-536.
Tartakovsky, B., Manuel, M. E., Guiot, S. R. (2005) Degradation of trichloroethylene in a coupled anaerobic-aerobic bioreactor: Modeling and experiment, Biochemical Engineering Journal, 26(1), 72-81.
Tillotson, J.M. (2007) Laboratory Studies in Chlorinated Solvents and Hydrocarbon Bioremediation. M.S. Thesis: North Carolina State University.
U.S. Environmental Protection Agency (EPA), (1999) Monitored natural attenuation of petroleum hydrocarbons: U.S. EPA remedial technology fact sheet. EPA/600/F-98/601.
U.S. Environmental Protection Agency (EPA), (2004) How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers. EPA 510-R-04-002.
U.S. Environmental Protection Agency (EPA), (2007) Green remediation and the use of renewable energy for remediation projects, Office of Solid Waste and Emergency Response, U.S. EPA, Washington, D.C.
U.S. Environmental Protection Agency (EPA), (2009) Superfund green remediation strategy, Office of Solid Waste and Emergency Response, U.S. EPA, Washington, D.C.
U.S. Environmental Protection Agency (EPA), (2010) Federal remediation technologies roundtable meeting, U.S. EPA, Arlingtion V.
Volkering, F., Pijls, C. (2004) Factors Determining Reductive Dechlorination of cis-1,2-DCE at PCE Contaminated Sites. Proceedings of the Fourth International Conferenceon Remediation of Chlorinated and Recalcitrant Compounds (Monterey, CA; May 2004). Paper 3D-10. Columbus, OH: Battelle Press.
Yao, K. M., Habibian, M. M., Omelia, C. R. (1971) Water and waste water filtration - concepts and applications, Environ. sci. technol., 5(11), 1105-1112.
Yee, D. C., Maynard, J. A., Wood, T. K. (1998) Rhizoremediation of trichloroethylene by a recombinant, root-colonizing Pseudomonas fluorescens strain expressing toluene ortho-monoooxygenase constitutively, Appl. Environ. Microbiol., 64(1), 112-118.
Yang, Y. R., McCarty, P. L. (2000) Biologically enhanced dissolution of tetrachloroethene DNAPL, Environ. Sci. Technol., 34(14), 2979-2984.
Yang, Y. R., McCarty, P. L. (2002) Comparison between donor substrates for biologically enhanced tetrachloroethene DNAPL dissolution, Environ. Sci. Technol., 36(15), 3400-3404.
Zenker, M. J., Borden, R. C., Barlaz, M. A., Lieberman, M. T., Lee, M. D. (2000) Insoluble substrates for reductive dehalogenation in permeable reactive barriers. In: Wickramanayake, G.B., Gavaskar, A. R., Alleman, B. C., Magar, V. S. Bioremediation and Phytoremediation of Chlorinated and Recalcitrant Compounds, Battelle Press, 47-53.
Zawtocki, C., Lieberman M.T., Birk G.M. (2004) A dash of oil and let marinate, Pollut. Eng., 30-34.
Zawtocki, C. (2005) Naturally cleaner groundwater – Soybean-based emulsion is proving to decontaminate groundwater more quickly than traditional remediation methods, Mil. Eng., 97(637), 55-56.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.154.171
論文開放下載的時間是 校外不公開

Your IP address is 3.17.154.171
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code