Responsive image
博碩士論文 etd-0805113-220336 詳細資訊
Title page for etd-0805113-220336
論文名稱
Title
超音波頻率變化對三維IC封裝之Couples-polishing Activation接合製程微銅塊摩擦效應之影響
Effects of Ultrasonic Frequency Variation on the Micro Copper Bumps Friction Phenomena in the Couples-polishing Activation Bonding Process of 3D IC Package
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
94
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2013-07-15
繳交日期
Date of Submission
2013-09-05
關鍵字
Keywords
CAB製程、銅接點接合製程、超音波震動、三維積體電路
couples-polishing activation bonding (CAB) process, 3D integrated circuits (ICs), copper-bonding process, ultrasonic vibration
統計
Statistics
本論文已被瀏覽 5688 次,被下載 827
The thesis/dissertation has been browsed 5688 times, has been downloaded 827 times.
中文摘要
由於高密度IC的發展,許多研究投入三維積體電路(3D IC)的接合技術,希望能降低製程溫度,以增加接點的可靠度。但是目前低溫製程裡,有許多製程需要較嚴格的環境條件,因此使得製程成本較高,製程步驟也較為繁瑣。近年有研究者提出CAB(Couples-Polishing Activation Bonding)製程,此製程利用超音波震動的方法,使接觸介面產生摩擦效應,利用摩擦生熱的方法來使介面溫度提高,進而產生介面原子擴散的現象而使銅接點產生接合,且此製程可以在常溫下執
行。
本研究利用有限元素法建立微銅塊超音波震動接合製程之三維模擬模型,並探討不同頻率的超音波震動對於銅塊接合面的應力場、應變場及溫度場的影響,並分析摩擦係數以及振幅對於接合面應變之影響。
模擬結果顯示在1500μs的作用時間後, 50k赫茲成功模擬出接合製程,其等效應力曲線可分為應力上升階段、應力下降階段及應力穩定階段。由本研究之分析結果可知,超音波震動頻率高低會影響能量傳遞的速率,50k赫茲在模擬結束前,最外圍的應變比中心應變少了23%;且在發生應力穩定的時間點上,研究結果發現有一臨界頻率,當頻率再升高時,到達應力穩定之時間已趨於一定值。
而最後利用改變摩擦係數以及振幅得到的模擬結果可看出,在固定頻率下,摩擦係數由0.1改為0.15會比0.15改為0.2具有較大的應變上升;而在更動振幅上面,當頻率越低時,振幅對其最大等效應變影響越大。
Abstract
Since the development of high-density integrated circuits (ICs), numerous studies have used 3D IC bonding technology to reduce processing temperatures and increase reliability. However, numerous stringent environmental conditions have been established for low-temperature processes. This has increased costs and created additional processing steps. Recently, researchers have proposed a couples-polishing activation-bonding (CAB) process. This process involves using ultrasonic vibration technology to induce interfacial friction, thereby increasing temperatures at the interface. Subsequently, atomic diffusion leaving copper contacts generate engagement. This process can be performed at room temperature.
In this study, the finite-element method was used to establish a micro-copper block ultrasonic-vibration-bonding 3D simulation model. In addition, the effects of various ultrasonic-vibration frequencies on the stress, strain, and temperature fields of the interface were explored, and the effects of the coefficients of friction and amplitude on interface strain were analyzed.
The simulation results showed that at 50 kHz, the bonding process was successful after 1500 μs. The equivalent stress could be divided into stress upward, stress downward, and stress stabilization phases. Based on the results, it may be suggested that ultrasound-vibration frequencies affect energy transfer rates. The results obtained at 50 kHz showed that the outermost strain was less than 23% of the center strain.
By increasing the frequency, a critical frequency was determined regarding the period necessary to obtain a steady stress rate.
Finally, when the friction coefficient and amplitude were changed, at a fixed frequency, the coefficient of friction rose from 0.1 to 0.15, which was a larger increase in strain than 0.15 to 0.2. Regarding amplitude changes, when the frequency was low, the amplitude exhibited an increased effect on the maximum equivalent strain.
目次 Table of Contents
論文審定書 i
致 謝 ii
摘 要 iii
Abstract iv
目 錄 vi
表目錄 ix
圖目錄 xi
第 一 章 緒論 1
1. 1 前言 1
1. 2高密度IC之發展 2
1. 3文獻回顧 4
1.3. 1直接接合製程 4
1.3. 2金屬-金屬接合製程 5
1.3. 3聚合物黏著接合製程 7
第 二 章 基礎理論介紹 12
2. 1有限元素法簡介 12
2. 2套裝軟體ANSYS 12.1/ LS-DYNA簡介[31] 13
2. 3直接熱固耦合原理 15
第 三 章 研究方法 20
3. 1假設條件 20
3. 2模型建構與設定 20
3.2. 1元素與材料模型的選用 20
3.2. 2模型幾何結構與尺寸 21
3.2. 3網格劃分 22
3.2. 4邊界條件及負載方式與接觸設定 22
3.2. 5材料參數設定與編輯關鍵字文件 23
3.2. 6網格收斂性分析 25
第 四 章 結果與討論 32
4. 1熱功當量設定 32
4. 2微銅塊超音波摩擦接合模擬 33
4.2. 1模擬結果 34
4.2. 2綜合討論 41
4. 3摩擦係數對超音波摩擦接合之影響 43
4. 4振幅對超音波摩擦接合之影響 43
第 五 章 73
5. 1 結論 73
5. 2 未來展望 74
參考文獻 75
參考文獻 References
[1] Topol, Anna W., et al. "Three-dimensional integrated circuits." IBM Journal of Research and Development 50.4.5 (2006): 491-506.
[2] Patti, Robert S. "Three-dimensional integrated circuits and the future of system-on-chip designs." Proceedings of the IEEE 94.6 (2006): 1214-1224.
[3] Motoyoshi, Makoto. "Through-silicon via (TSV)." Proceedings of the IEEE 97.1 (2009): 43-48.
[4] Tu, K. N. "Reliability challenges in 3D IC packaging technology."Microelectronics Reliability 51.3 (2011): 517-523.
[5] http://ieknet.iek.org.tw/ , 2012/07/15
[6] Ko, Cheng-Ta, and Kuan-Neng Chen. "Low temperature bonding technology for 3D integration." Microelectronics Reliability 52.2 (2012): 302-311.
[7] Gueguen, Pierric, et al. "Physics of direct bonding: Applications to 3D heterogeneous or monolithic integration." Microelectronic Engineering 87.3 (2010): 477-484.
[8] Radu, Ionut, et al. "Recent Developments of Cu-Cu non-thermo compression bonding for wafer-to-wafer 3D stacking." 3D Systems Integration Conference (3DIC), 2010 IEEE International. IEEE, 2010.
[9] Taibi, Rachid, et al. "Full characterization of Cu/Cu direct bonding for 3D integration." Electronic Components and Technology Conference (ECTC), 2010 Proceedings 60th. IEEE, 2010.
[10] Ko, Cheng-Ta, and Kuan-Neng Chen. "Reliability of key technologies in 3D integration." Microelectronics Reliability (2012).
[11] Tang, Ya-Sheng, Yao-Jen Chang, and Kuan-Neng Chen. "Wafer-level Cu–Cu bonding technology." Microelectronics Reliability 52.2 (2012): 312-320.
[12] Jang, Eun-Jung, et al. "Annealing temperature effect on the Cu-Cu bonding energy for 3D-IC integration." Metals and Materials International 17.1 (2011): 105-109.
[13] Ohara, Yuki, et al. "10 µm fine pitch Cu/Sn micro-bumps for 3-D super-chip stack." 3D System Integration, 2009. 3DIC 2009. IEEE International Conference on. IEEE, 2009.
[14] Lim, Dau Fatt, et al. "Achieving low temperature Cu to Cu diffusion bonding with self assembly monolayer (SAM) passivation." 3D System Integration, 2009. 3DIC 2009. IEEE International Conference on. IEEE, 2009.
[15] Peng, L., et al. "Ultrafine pitch (6-µm) evolution of Cu-Cu bonded interconnects in 3D wafer-on-wafer stacking." Interconnect Technology Conference (IITC), 2012 IEEE International. IEEE, 2012.
[16] Wang, Pei-I., et al. "Low temperature wafer bonding by copper nanorod array."Electrochemical and Solid-State Letters 12.4 (2009): H138-H141.
[17] Wang, P., et al. "Low temperature copper-nanorod bonding for 3-D integration."Materials Research Society Symposium Proceedings. Vol. 970. Warrendale, Pa.; Materials Research Society; 1999, 2007.
[18] Kim, T. H., et al. "Room temperature Cu–Cu direct bonding using surface activated bonding method." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 21.2 (2003): 449-453.
[19] Shigetou, Akitsu, et al. "Bumpless interconnect of 6-μm pitch Cu electrodes at room temperature." Electronic Components and Technology Conference, 2008. ECTC 2008. 58th. IEEE, 2008.
[20] Ko, Cheng-Ta, and Kuan-Neng Chen. "Wafer-level bonding/stacking technology for 3D integration." Microelectronics reliability 50.4 (2010): 481-488.
[21] Huang, Y. P., et al. "Low Temperature Cu-Sn and Sn-Sn Bonding Development for 3D Interconnect Applications."
[22] http://www.sematech.org/meetings/archives/3d/8510/pres/Ramm.pdf , 2012/07/15
[23] Chang, Jing-Yao, et al. "Reliable Microjoints Formed by Solid–Liquid Interdiffusion (SLID) Bonding Within a Chip-Stacking Architecture."Components, Packaging and Manufacturing Technology, IEEE Transactions on2.6 (2012): 979-984.
[24] Klumpp, Armin, et al. "Vertical system integration by using inter-chip vias and solid-liquid interdiffusion bonding." Jpn. J. Appl. Phys 43.7A (2004): L829-L830.
[25] Pan, C. T., et al. "A low-temperature wafer bonding technique using patternable materials." Journal of Micromechanics and Microengineering 12.5 (2002): 611.
[26] Tominaga, Shigeru, et al. "Hybrid electrochemical mechanical planarization process for Cu dual-damascene through-silicon via using noncontact electrode pad." Japanese Journal of Applied Physics 49.5 (2010).
[27] Ko, Cheng-Ta, et al. "Wafer-to-wafer hybrid bonding technology for 3D IC."Electronic System-Integration Technology Conference (ESTC), 2010 3rd. IEEE, 2010.
[28] http://www.asjp.co.jp/ , 2012/07/15
[29] Watanabe, Naoya. "Room-Temperature Cu--Cu Bonding in Ambient Air Achieved by Using Cone Bump." Applied physics express 4.1 (2011): 6501.
[30] Iwanabe, K., et al. "Room-temperature microjoining using ultrasonic bonding of compliant bump." Low Temperature Bonding for 3D Integration (LTB-3D), 2012 3rd IEEE International Workshop on. IEEE, 2012.
[31] 郝好山,胡仁喜與康士廷,ANSYS 12.0/LS-DYNA非線性有限元分析 從入門到精通,機械工業出版社,北京,中國,2010。
[32] ANSYS 12.1 Help ,2012.
[33] LS-DYNA Keyword User’s Manual, Version 971, Vol.1-2, http://www.dynasupport.com/news/ls-dyna-971-manual-pdf, 2012/06/29.
[34] Lee, Chang-Chun, et al. "Reliability estimation and failure mode prediction for 3D chip stacking package with the application of wafer-level underfill."Microelectronic Engineering (2012).
[35] 莊昀達,材料覆被對IC封裝銅打線製程之影響,碩士論文,機械與機電工程研究所,國立中山大學,高雄市,台灣,2011。
[36] http://aries.ucsd.edu/LIB/PROPS/PANOS/cu.html , 2012/07/15
[37] Budynas, Richard Gordon, and J. Keith Nisbett. Shigley's mechanical engineering design. New York: McGraw-Hill, 2008.
[38] Liu, Yong, Scott Irving, and Timwah Luk. "Thermosonic wire bonding process simulation and bond pad over active stress analysis." Electronic Components and Technology Conference, 2004. Proceedings. 54th. Vol. 1. IEEE, 2004.
[39] Rusinko, A. "Analytical description of ultrasonic hardening and softening."Ultrasonics 51.6 (2011): 709-714.
[40] TIAN, Yan-hong, Ling-chao KONG, and Chun-qing WANG. "Review of Ultrasonic Wire Bonding Mechanism in Chip Interconnection [J]." Electronics Process Technology 1 (2007): 001.
[41] Srikanth, N., et al. "Critical study of thermosonic copper ball bonding." Thin Solid Films 462 (2004): 339-345.
[42] Levine, Lee. "The ultrasonic wedge bonding mechanism: Two theories converge." Proceedings of the International Symposium on Microelectronics. Reston, VA, USA: ISHM Press. 1995.
[43] Wang, Fuliang, and Yun Chen. "Modeling study of thermosonic flip chip bonding process." Microelectronics Reliability 52.11 (2012): 2749-2755.
[44] Wang, Fuliang, Lei Han, and Jue Zhong. "Stress-induced atom diffusion at thermosonic flip chip bonding interface." Sensors and Actuators A: Physical149.1 (2009): 100-105.
[45] Wang, Fuliang, and Lei Han. "Ultrasonic Effects in the Thermosonic Flip Chip Bonding Process." (2013): 1-1.
[46] Li, Jun-hui, et al. "Microstructural characteristics of Au/Al bonded interfaces."Materials characterization 58.2 (2007): 103-107.
[47] Li, Junhui, et al. "Theoretical and experimental analyses of atom diffusion characteristics on wire bonding interfaces." Journal of Physics D: Applied Physics 41.13 (2008): 135303.
[48] Siddiq, A., and Elaheh Ghassemieh. "Thermomechanical analyses of ultrasonic welding process using thermal and acoustic softening effects." Mechanics of Materials 40.12 (2008): 982-1000.
[49] 日月光金屬接合先進製程研發專案進度報告,2012/07/15。
[50] Yeh, Chang-Lin, Yi-Shao Lai, and Chin-Li Kao. "Transient simulation of wire pull test on Cu/low-K wafers." Advanced Packaging, IEEE Transactions on 29.3 (2006): 631-638.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code