Responsive image
博碩士論文 etd-0805114-161613 詳細資訊
Title page for etd-0805114-161613
論文名稱
Title
Cu2ZnSn(S,Se)4薄膜製程之研究
A study of Cu2ZnSn(S,Se)4 thin film process for photovoltaic applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
81
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-06-26
繳交日期
Date of Submission
2014-09-05
關鍵字
Keywords
元素疊層前驅物、硫化、快速加熱製程、CZTSe/ZnS、相互擴散、Cu2ZnSn(S,Se)4
ZnS/CZTSe, Interdiffusion, Rapid Thermal Processing, Precursors, Sulfurization, Cu2ZnSn(S,Se)4
統計
Statistics
本論文已被瀏覽 5670 次,被下載 252
The thesis/dissertation has been browsed 5670 times, has been downloaded 252 times.
中文摘要
本研究試圖以元素疊層為前驅物(precursor)利用加熱反應製程製備單一相Cu2ZnSn(S,Se)4 (簡稱CZTSSe)薄膜,其中摻入硫是希望從表面漸進取代原有的硒,而造成由薄膜表面至底層的濃度梯度,而形成CZTSSe,此舉是為了增加表面的能隙值來增進主吸收層可吸收光的波段,並且使得在製作成元件時能與緩衝層有更好的能帶匹配度以增加光電流的收集。首先我們使用Zn/Sn/Cu/(S,Se)元素疊層進行快速加熱反應,考慮到電阻率偏低和Sn二次相的問題,因此組成設定Cu/(Zn+Sn)=0.75,Zn/Sn=1.3,Se/Metal=1.3,在快速加熱製程中為使S氣氛充足,將反應完之CZTSe薄膜置於石墨盒中並放置一小顆大約0.05g的S顆粒並以20oC/sec以上的升溫速度在530oC持溫1min進行硫化。XRD和Raman皆出現CZTSe和CZTS的peak,電阻率為20 Ω-cm ,能隙值為1.3eV,SEM顯示結晶結構不佳,根據GIXRD結果得知硫稍微產生濃度梯度。
為改善S/Se比例不容易掌控的問題,另一製程則以金屬元素疊層為前驅物在真空腔體中提供足量Se蒸氣和不同通量S蒸氣進行反應,其前驅物組成設定不變,以30oC/min的升溫速度在570 oC持溫40分鐘,由XRD圖發現主繞射峰分裂成兩根分別為CZTSe和CZTS,電阻率為0.2 Ω-cm ,能隙值為1.2eV,SEM顯示結晶結構已有改善但仍不佳,根據GIXRD的結果發現已成功合成五元化合物且硫產生更明顯的濃度梯度。
最後嘗試將緩衝層換成ZnS薄膜,藉由後續熱退火程序促使其與CZTSe薄膜曡層間的相互擴散而形成上述的CZTSSe薄膜,而由歐傑電子能譜儀之元素縱深分佈和低掠角X光繞射分析可以發現在ZnS和CZTSe的交界處確實發生了相互擴散的現象,將此薄膜製作成元件,卻沒有形成p-n junction的跡象,可能的原因為覆蓋不均勻導致漏電流。
Abstract
Adding a concentration gradient of sulfur to Cu2ZnSnSe4 to form a pentanary alloy of Cu2ZnSn(SxSe1-x)4 (CZTSSe) may modify the band structure to enhance the light absorption and also reduce the band discontinuity between the absorber layer and the buffer layer to lower the carrier transport barrier. In this work, we developed a combination of selenization and sulfurization processes to prepare CZTSSe films. Firstly, elemental precursors with a stacking sequence of (S,Se)/Cu/Sn/Zn/SLG were used for further reaction by rapid thermal annealing to form a single-phase Cu2ZnSn(S,Se)4 (CZTSSe) film. The preset composition of a precursor was Cu/(Zn+Sn)=0.75, Zn/Sn=1.3, and Se/Metal=1.3. An additional sulfur pellet weighted about 0.05g was placed in the graphite box to provide sufficient sulfur vapor during the RTA process. The heating process was done by a temperature ramp rate above 20oC/sec and kept at 530oC for 1 min. Both XRD and Raman analysis indicated that CZTSSe films could be formed under proper conditions. However, the film structures were poor for all the specimens.
For a better control of the S/Se ratio in the film, a precursor with stacked metal films was simultaneously exposed to S and Se vapor fluxes and heated to 570oC with a temperature ramp rate of 30oC/min in a vacuum chamber. The duration of thermal annealing was 40 minutes. Indeed, the CZTSSe films were successfully prepared as expected. Further invstigations using GIXRD revealed a slight concentration gradient of sulfur in the film. Unfortunately, the film structure still needs to be improved but it may not easy due to the formation of solid phases of binary and/or ternary sulfides during the heating processes.
Since a CZTSe film with a compact grain structure can be easily prepraed in our laborotory by rapd thermal seelnization, a technique based on the interdiffusion between ZnS and CZTSe has thus been developed to produce a CZTSSe film with a desired sulfur gradient. An annealing at 400oC for 10 minutes would do the work. Auger depth profiling as well as GIXRD showed the evidences of significant interdiffusion bwtween the two materials. Although a first try on the device fabrication was not sucessful, this is still a convicing technique for future device developments.
目次 Table of Contents
目錄
第一章 簡介 1
1-1 前言 1
1-2太陽電池原理 2
1-3 文獻回顧 5
1-3-1 CZTS(e)材料性質 5
1-3-2 CZTSSe之結構分析 14
1-3-3 CZTSSe中S/Se ratio對元件效率的影響 18
1-4研究動機及目的 20
第二章 實驗流程與分析儀器介紹 22
2-1 CZTSSe薄膜製備與元件製作 22
2-1-1 基板準備工作(SLG/Mo) 23
2-1-2 CZTSSe主吸收層製備 25
2-1-3 透光層和指狀電極之製程及其薄膜性質 28
2-2 分析方法與儀器介紹 29
2-2-1 四點探針(four-point probe) 29
2-2-2 X- ray繞射儀(XRD)、低掠角X光繞射(GIXRD) 31
2-2-3穿透光譜儀(Transmition Spectrophotometer) 31
2-2-4 反射光譜儀(Reflective Spectrophotometer) 31
2-2-5顯微拉曼光譜儀(Micro-Raman Spectroscopy) 31
2-2-6掃描式電子顯微鏡(SEM)、能量解析X光光譜儀(EDS) 32
2-2-7 歐傑電子能譜儀(AES) 32
2-2-8 I-V量測與模擬光源 32
第三章 實驗結果與討論 34
3-1快速熱退火製程 34
3-2 真空熱退火製程 45
3-3 ZnS/CZTSe疊層之相互擴散製程 51
第四章 結論 58
第五章 參考文獻 59



圖目錄
圖 1太陽電池主吸收層常用材料的每公斤價與全球蘊藏量 1
圖 2太陽電池構造圖 3
圖 3 太陽電池照光前後電流-電壓特性圖 3
圖 4太陽電池等效電路圖 4
圖 5串聯及並聯電阻對元件電流-電壓特性影響[2] 4
圖 6金剛石化合物 (ADAMANTINE COMPOUND) 系列架構圖 [4] 6
圖 7 STANNITE 與KESTERITE 結構圖 [3] 6
圖 8五種CZTSE 晶胞結構圖 [5] 7
圖 9計算的CU2ZNSNS4在化學能空間的擬相圖:(A)在CU=-0.2EV平面內的截面;(B)三維擬相圖 8
圖 10計算的CU2ZNSNS4本質缺陷的受體能階或施體能階位置[7] 10
圖 11 CZTS 的電子能帶結構 (A)KS結構 (B)ST結構 [17] 11
圖 12不同材料之能帶圖 11
圖 13 CZT(S1-XSEX)能隙值變化圖 [16] 12
圖 14載子濃度N、載子遷移率Μ和電阻率Ρ對CU/(ZN+SN)做比較圖 (A)在530 OC硒化之CZTSE (B)在530 OC硫化之CZTS [31] 13
圖 15 CIS、CZTS與CZTSE吸收係數 14
圖 16 (A)CIGS (B)CZTSE (C)CZTS之XRD繞射圖 [34] 15
圖 17 CZT(SXSE1-X)隨X不同之RAMAN光譜圖,A為X=1、B為X=0.4、C為<0.1 [34] 16
圖 18 A、B、C三個元件照光前和照光後之J-V圖 18
圖 19 (A)量子效率圖 (B)能隙圖 (C)開路電壓和能隙比較圖 19
圖 20 (A) CZTSE元件能帶圖 (B)CZTSSE元件能帶圖 21
圖 21元件製作流程 22
圖 22薄膜分析方法 23
圖 23四吋共焦濺鍍系統 24
圖 24鍍製CZTSSE薄膜流程 25
圖 25電子束蒸鍍系統:電子在正交電磁場作用下受勞倫茲力的作用偏轉270O,可避免直槍中正離子對鍍層的汙染,以加速電壓U及偏轉磁場B控制電子束斑點位置。 26
圖 26分子束蒸鍍系統 27
圖 27石墨盒設計圖 27
圖 28(A)AL電極MASK示意圖,(B)單一指狀電極構造 28
圖 29三槍平行濺鍍系統 29
圖 30四點探針示意圖 30
圖 31 30
圖 32以不同S/SE比例所製備之CZTSSE試片其X光繞射圖 (A) S/SE=0.3(B) S/SE=0.5 (C) S/SE=1 35
圖 33 (A)為S/SE=2 (B)為細部之X光繞射圖 36
圖 34石墨盒中試片與硫顆粒配置圖 37
圖 35 RTA製程之CZTSE X光繞射圖 37
圖 36硫氣氛RTA製程之X光繞射圖 38
圖 37硫氣氛RTA製程之拉曼光譜圖 38
圖 38 (A)為550OC (B)為530OC (C)為500OC之X光繞射圖 40
圖 39硫化溫度530OC之GIXRD繞射圖 40
圖 40 530OC試片之(A)穿透光譜圖 (B) (ΑHΝ)2對HΝ作圖 41
圖 41 550OC薄膜(A)為剖面SEM圖 (B)為上視SEM圖 42
圖 42 530OC薄膜(A)為剖面SEM圖 (B)為上視SEM圖 43
圖 43 基板溫度分別為(A)400OC (B)500OC (C)600OC 於真空腔體內進行硫化之XRD圖 45
圖 44真空熱退火製程流程 46
圖 45真空熱退火製程之X光繞射圖 47
圖 46真空熱退火製程流程2 47
圖 47真空熱退火製程2之X光繞射圖 48
圖 48真空熱退火製程2之GIXRD圖 48
圖 49真空熱退火製程2試片之(A)穿透光譜圖 (B) (ΑHΝ)2對HΝ作圖 49
圖 50真空熱退火製程2薄膜(A)為剖面SEM圖 (B)為上視SEM圖 50
圖 51閃鋅礦結構 51
圖 52 ZNS之X光繞射圖 52
圖 53 ZNS薄膜(A)為剖面SEM圖 (B)為上視SEM圖 53
圖 54 ZNS/CZTSE/MO薄膜未進行熱退火之歐傑縱深分析圖 54
圖 55 ZNS/CZTSE/MO薄膜在400 OC熱退火10分鐘之歐傑縱深分析圖 55
圖 56 ZNS與CZTSSE在400 OC熱退火10分鐘之GIXRD繞射圖 55
圖 57 ZNS/CZTSE/MO薄膜(A)為未進行熱退火(B)為在400 OC熱退火10分鐘之上視 SEM圖 56
圖 58為未照光之I-V CURVE圖 57
圖 59為照光之I-V CURVE圖 57

表目錄
表 1 KESTERITE 晶體結構特性表 [6] 7
表 2常見二次相的導電型態和能隙值 12
表 3 CZTS(E)的電性特性 13
表 4 CZTSE常見RAMAN峰值 16
表 5 CZTS(E)及常見二次相之XRD PEAK 17
表 6各種不同S/SE RATIO之高效率CZTSSE元件 18
參考文獻 References
[1] W. Ki and H. W. Hillhouse, A general route to earth aboundant element absorber layers for thin film photovoltaicseith high yield using molecular precursors and non-toxic solvents, IEEE, 978-1-4244-9965-6 (2011).
[2] http://pveducation.org/pvcdrom
[3] Hall, S. R.; Szymanski, J. T.; Stewart, J. M. Kesterite, Cu2(Zn, Fe)SnS4 andstannite, Cu2(Fe, Zn)SnS4 structural similar but distinct minerals. Can.Miner. 1978, 16, 131–137.
[4] Schorr, S. Structural aspects of adamantine like multinary chalcogenides.Thin Sold Films 2007, 515, 5985–5991.
[5] Ichimura, M.; Nakashima, Y. Analysis of atomic and electronic structures of Cu2ZnSnS4 based on first-principle calculation. Jpn. J. Appl. Phys. 2009,48, 090202.
[6] Mincryst information card-KESTERITE (Card No. 2333). http://database.iem.ac.ru/mincryst/s_carta.php?KESTERITE+2333 (accessed Feb 26,2010).
[7] Shiyou Chen, Ji-Hui Yang, X. G. Gong, Aron Walsh, and Su-Huai Wei, Intrinsic point defects and complexes in the quaternary kesterite semiconductor Cu2ZnSnS4, PHYSICAL REVIEW B 81, 245204 (2010).
[8] Shiyou Chen, X. G. Gong, Aron Walsh, and Su-Huai Wei, Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4, APPLIED PHYSICS LETTERS 96, 021902 (2010).
[9] A Redinger, S Siebentritt, Coevaporation of Cu2ZnSnSe4 thin films, APPLIED PHYSICS LETTERS 97, 092111 (2010).
[10] SeJin Ahn, Sunghun Jung, Jihye Gwak, Ara Cho, Keeshik Shin, Kyunghoon Yoon, Doyoung Park, Hyeonsik Cheong, and Jae Ho Yun, Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values, APPLIED PHYSICS LETTERS 97, 021905 (2010).
[11] Tooru Tanaka, Takeshi Nagatomo, Daisuke Kawasaki, Mitsuhiro Nishio, Qixin Guo, Akihiro Wakahara, Akira Yoshida, Hiroshi Ogawa , Preparation of Cu2ZnSnS4 thin films by hybrid sputtering, Journal of Physics and Chemistry of Solids 66 (2005) 1978–1981.
[12] Norio Nakayama, Kentaro Ito, Sprayed films of stannite Cu2ZnSnS4, Applied Surface Science 92 (1996) 171-175.
[13] A. Ennaoui, M. Lux-Steiner, A. Weber, D. Abou-Ras, I. Kötschau, H.-W. Schock, R. Schurr, A. Hölzing, S. Jost, R. Hock, T. Voß, J. Schulze, A. Kirbs, Cu2ZnSnS4 thin film solar cells from electroplated precursors: Novel low-cost perspective, Thin Solid Films 517 (2009) 2511–2514.
[14] Hironori Katagiri, Kazuo Jimbo, Win Shwe Maw, Koichiro Oishi, Makoto Yamazaki, Hideaki Araki, Akiko Takeuchi, Development of CZTS-based thin film solar cells, Thin Solid Films 517 (2009) 2455–2460.
[15] Kunihiko Tanaka , Masatoshi Oonuki, Noriko Moritake, Hisao Uchiki, Cu2ZnSnS4 thin film solar cells prepared by non-vacuum processing, Solar Energy Materials & Solar Cells 93 (2009) 583–587.
[16] Shulin Ji, Tongfei Shi, Xiaodong Qiu, Jian Zhang, Guoping Xu, Chao Chen, Zheng Jiang& Changhui Ye, A Route to Phase Controllable Cu2ZnSn(S1-xSex)4 Nanocrystals with Tunable Energy Bands, SCIENTIFIC REPORTS | 3 : 2733 | DOI: 10.1038/srep02733.
[17] Shiyou Chen and X. G. Gong, Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II-VI and I-III-VI2 compounds, PHYSICAL REVIEW B 79, 165211 (2009).
[18] C. Julien, M. Eddrief, I. Samaras and M. Balkanski, Optical and electrical characterizations of SnSe, SnS2 and SnSe2 single crystals, Materials Science and Engineering B15, 70-72 (1992).
[19] S. Chen, X. G. Gong, A. Walsh and S. H. Wei, Crystal and electronic band structure of Cu2ZnSnX4 (X=S and Se) photovoltaic absorbers: First-principles insights, Applied Physics Letters 94, 041903 (2009).
[20] Y. Z. Li, X. D. Gao, C. Yang, F. Q. Huang, The effects of sputtering power on optical and electrical properties of copperselenide thin films deposited by magnetron sputtering, Journal of Alloys and Compounds 505, 623-627 (2010).
[21] D. H. Kuo, W. D. Haung, Y. S. Huang, J. D. Wu, Y. J. Lin, Effect of post-deposition annealing on the performance of D.C. sputtered Cu2SnSe3 thin films, Surface and Coatings Technology 205, S196-S200 (2010).
[22] Zhenghua Su, Kaiwen Sun, Zili Han, Fangyang Liu, Yanqing Lai, Jie Li and Yexiang Liu, Fabrication of ternary Cu–Sn–S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method, J. Mater. Chem., 2012, 22, 16346–16352.
[23] Louise S. Price, Ivan P. Parkin, Amanda M. E. Hardy, and Robin J. H. Clark, Atmospheric Pressure Chemical Vapor Deposition of Tin Sulfides (SnS, Sn2S3, and SnS2) on Glass, Chem. Mater. 1999, 11, 1792-1799.
[24] N. Koteswara Reddy, K.T. Ramakrishna Reddy, Growth of polycrystalline SnS films by spray pyrolysis, Thin Solid Films 325 (1998) 4–6.
[25] J. Nanda, Sameer Sapra, and D. D. Sarma, Size-Selected Zinc Sulfide Nanocrystallites: Synthesis, Structure, and Optical Studies, Chem. Mater. 2000, 12, 1018-1024.
[26] J. Zhang, L. Shao, Y. Fu, E. Xie, Cu2ZnSnS4 thin films prepared by sulfurization of ion beam sputtered precursor and their electrical and optical properties Rare Met., 25 (2006), pp. 315–319.
[27] T. Tanaka, T. Nagatomo, D. Kawasaki, M. Nishio, Q. Guo, A. Wakahara, A. Yoshida, H. Ogawa, Preparation of Cu2ZnSnS4 thin films by hybrid sputtering J. Phys. Chem. Solids, 66 (2005), pp. 1978–1981.
[28] K. Ito, T. Nakazawa, Electrical and optical properties of stannite-type quaternary semiconductor thin films, Jpn. J. Appl. Phys., 27 (1988), pp. 2094–2097.
[29] Z. Zhou, Y. Wang, D. Xu, Y. Zhang, Fabrication of Cu2ZnSnS4 screen printed layers for solar cells, Sol. Energy Mater. Sol. Cells, 94 (2010), pp. 2042–2045.
[30] R.A. Wibowo, E.S. Lee, B. Munir, K.H. Kim, Pulsed laser deposition of quaternary Cu2ZnSnSe4 thin films, Phys. Status Solidi A, 204 (2007), pp. 3373–3379.
[31] Seung Min Lee, Yong Soo Cho, Characteristics of Cu2ZnSnSe4 and Cu2ZnSn(Se,S)4 absorber thin films prepared by post selenization and sequential sulfurization of co-evaporated Cu–Zn–Sn precursors, Journal of Alloys and Compounds 579 (2013) 279–283.
[32] C. Persson, Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4, Journal of Applied Physics 107, 053710 (2010).
[33] SeJin Ahn, Sunghun Jung, Jihye Gwak, Ara Cho, Keeshik Shin, Kyunghoon Yoon, Doyoung Park, Hyeonsik Cheong, and Jae Ho Yun, Determination of band gap energy (Eg) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values, APPLIED PHYSICS LETTERS 97, 021905 (2010).
[34] David B. Mitzi, Oki Gunawan, Teodor K. Todorov, Kejia Wang, Supratik Guha, The path towards a high-performance solution-processed kesterite solar cell, Solar Energy Materials & Solar Cells 95 (2011) 1421–1436.
[35] A. Nagaoka,K. Yoshino, H. Taniguchi,T. Taniyama, H. Miyake, Growth of Cu2ZnSnSe4 single crystals from Sn solutions, S0022-0248 ,12, 00372-7.
[36] N. B. Mortazavi Amiri, A. V. Postnikov, Secondary phase Cu2SnSe3 vs. kesterite Cu2ZnSnSe4: similarities and differences in lattice vibration modes.
[37] K. Muska, M. Kauk, M. Grossberg, M. Altosaar, J. Raudoja, O. Volobujeva, Influence of compositional deviations on the properties of Cu2ZnSnSe4 monograin powders, Energy Procedia10, 323-327 (2011).
[38] G. M. Ilari , C. M. Fella, C. Ziegler, A. R. Uhl, Y. E. Romanyukn , A. N. Tiwari, Cu2ZnSnSe4 solar cell absorbers spin-coated fromamine-containing ether solutions, Solar Energy Materials and Solar Cells 104, 125-130 (2012).
[39] A. Redinger, K. Hönes, X. Fontané, V. I. Roca, E. Saucedo, Detection of a ZnSe secondary phase in coevaporated Cu2ZnSnSe4 thin Films, Applied Physics Letters 98, 101907 (2011).
[40] Teodor K. Todorov, Kathleen B. Reuter, and David B. Mitzi, High-Efficiency Solar Cell with Earth-Abundant Liquid-Processed Absorber, Adv. Mater. 2010, 22, E156–E159.
[41] K. Wang, O. Gunawan, T. Todorov, B. Shin, S. J. Chey, N. A. Bojarczuk, D. Mitzi, and S. Guha, Thermally evaporated Cu2ZnSnS4 solar cells, APPLIED PHYSICS LETTERS 97, 143508 2010.
[42] O. Gunawan, T.K. Todorov, D.B. Mitzi, Loss mechanisms in hydrazine-processed Cu2ZnSn(Se,S)4 solar cells, Appl. Phys. Lett. 97 (2010) 233506 (3 pp).
[43] Teodor K. Todorov, Jiang Tang, Santanu Bag, Oki Gunawan, Tayfun Gokmen, Yu Zhu, David B. Mitzi, Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells, Adv. Energy Mater. 2013, 3, 34–38.
[44] R. Blachnik, A. MuÈller, The formation of Cu2S from the elements II. Copper used in form of foils, Thermochimica Acta 366 (2001) 47-59.
[45] Jun He, Lin Sun, Shiyou Chen, Ye Chen, Pingxiong Yang, Junhao Chu, Composition dependence of structure and optical properties of Cu2ZnSn(S,Se)4 solid solutions: An experimental study, Journal of Alloys and Compounds 511 (2012) 129–132.
[46] Tokio NAKADA and Masayuki MIZUTANI, 18% Efficiency Cd-Free Cu(In, Ga)Se2 Thin-Film Solar Cells Fabricated Using Chemical Bath Deposition. (CBD)-ZnS Buffer Layers, Jpn. J. Appl. Phys. Vol. 41 (2002) pp. L 165–L 167.
[47] R.N. Bhattacharya, K. Ramanathan, Cu(In,Ga)Se2 thin film solar cells with buffer layer alternative to CdS, Solar Energy 77 (2004) 679–683.
[48] B. Asenjo, A.M. Chaparro, M.T. Gutie´rrez, J. Herrero, J. Klaer, Study of CuInS2/ZnS/ZnO solar cells, with chemically deposited ZnS buffer layers from acidic solutions, Solar Energy Materials & Solar Cells 92 (2008) 302–306.
[49] Homare Hiroi, Noriyuki Sakai and Hiroki Sugimoto, Cd-FREE 5x5cm2-SIZED Cu2ZnSnS4 SUBMODULES, Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE 002719 – 002722.
[50] Noriyuki Sakai, Homare Hiroi and Hiroki Sugimoto, DEVELOPMENT OF Cd-FREE BUFFER LAYER FOR Cu2ZnSnS4 THIN-FILM SOLAR CELLS, Photovoltaic Specialists Conference (PVSC), 2011 37th IEEE 003654 – 003657.
[51] Yoshitaka TOMOMURA, Masahiko KITAGAWA, Akira SUZUKI and Shigeo NAKAJIMA, HOMOEPITAXIAL GROWTH OF ZnS SINGLE CRYSTAL THIN FILMS BY MOLECULAR BEAM EPITAXY, Journal ofCrystal Growth 99 (1990) 451—454.
[52] Masayoshi Tonouchi, Yong Sun, Tatsuro Miyasato, Hiroshi Sakama and Masaki Ohmura, Room-Temperature Synthesis of ZnS:Mn Films by H2 Plasma Chemical Sputtering, 1990 Jpn. J. Appl. Phys. 29 L2453.
[53] O Briot, N Briot, A Abounadi, B Gil, T Cloitre and R L Aulombard, Reflectivity analysis of ZnS layers grown on GaAs and Si substrates by metal organic vapourphase epitaxy, 1994 Semicond. Sci. Technol. 9 207.
[54] P.J. Dean, A.D. Pitt, M.S. Skolnick, P.J. Wright, B. Cockayne, Optical properties of undoped organometallic grown ZnSe and ZnS, Journal of Crystal Growth 59 (1982) 301-306.
[55] R.S. Mane, C.D. Lokhande, Chemical deposition method for metal chalcogenide thin flms, Materials Chemistry and Physics 65 (2000) 1-31.
[56] J. Vidala, O. Vigila, O. de Meloa, N. LoÂpeza, O. Zelaya-Angel, Infuence of NH3 concentration and annealing in the properties of chemical bath deposited ZnS flms, Materials Chemistry and Physics 61 (1999) 139-142.
[57] J. M. Doña and J. Herrero, Process and Film Characterization of Chemical‐Bath‐Deposited ZnS Thin Films, J. Electrochem. Soc. 1994 volume 141, issue 1, 205-210.
[58] Olga L Arenas, MTS Nair and P K Nair, Chemical bath deposition of ZnS thin films and modification by air annealing, Semicond. Sci. Technol. 12 (1997) 1323–1330. Printed in the UK.
[59] D.A. Johnston , M.H. Carletto , K.T.R. Reddy , I. Forbes , R.W. Miles, Chemical bath deposition of zinc sulfide based buffer layers using low toxicity materials, Thin Solid Films 403 – 404 (2002) 102–106.
[60] Paul O’Brien and John McAleese, Developing an understanding of the processes controlling the chemical bath deposition of ZnS and CdS, J. Mater. Chem., 1998, 8(11), 2309–2314.
[61] Tetsuichiro OHNO, Kenichi KURISU and Tsunemasa TAGUCHI, GROWTH OF HIGH-QUALITY CUBIC ZnS CRYSTALS AND THEIR APPLICATION TO MIS BLUE LIGHT-EMITFING DIODES, Journal of Crystal Growth 99 (1990) 737-742.
[62] Jonathan S. Steckel, John P. Zimmer, Seth Coe-Sullivan, Nathan E. Stott, Vladimir Bulovic´, and Moungi G. Bawendi, Blue Luminescence from (CdS)ZnS Core–Shell Nanocrystals, Angew. Chem. Int. Ed. 2004, 43, 2154 –2158.
[63] Hyunki Kim, Ji Yeon Han, Dong Seok Kang, Sung Wook Kim, Dong Seon Jang, Minwon Suh, Artavazd Kirakosyan, Duk Young Jeon, Characteristics of CuInS2/ZnS quantum dots and its application on LED, Journal of Crystal Growth 326 (2011) 90–93.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code