Responsive image
博碩士論文 etd-0805114-172724 詳細資訊
Title page for etd-0805114-172724
論文名稱
Title
模擬現地1,2-二氯乙烷生物復育之異味控制試驗
An odor control simulation test of in-situ 1,2-dichloroethane bioremediation
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
127
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-23
繳交日期
Date of Submission
2014-09-09
關鍵字
Keywords
硫化物控制、生物復育、菌相分析、酸化控制、1,2-二氯乙烷
microbial analysis, bioremediation, sulfide control, acidification, 1,2-dichloromethane
統計
Statistics
本論文已被瀏覽 5672 次,被下載 0
The thesis/dissertation has been browsed 5672 times, has been downloaded 0 times.
中文摘要
含氯有機溶劑為土壤及地下水中常見之重質非水相溶液污染物,而1,2-二氯乙烷(1,2-dichloroethane, 1,2-DCA or EDC)是具代表性之含氯有機溶劑之一,且被環保署列為21種國內建議優先調查之揮發性有機污染物。由於DNAPL污染場址之整治是屬於長期性的工作,因此厭氧生物復育技術是較為經濟可行的整治方式。惟DNAPL之厭氧生物降解需長期注入主要基質,以提供含氯有機物還原脫氯所需之碳源。但基質之注入將因厭氧反應而使地下水產生酸化及異味,造成地下水質不佳及操作維護難度增加等問題。因此,地下水之酸化及異味問題是在DNAPL場址進行厭氧生物整治時必須克服之挑戰。脫硫渣(desulfurization slag, DS)為煉鋼副產物之一,主要成份為氧化鈣(CaO)、二氧化矽(SiO2)、三氧化二鋁(Al2O3)、氧化鎂(MgO)、氧化錳(MnO)及氧化鐵(FeO)等。因此脫硫渣釋出之氫氧離子及金屬將有中和酸性地下水及沉澱厭氧產生之硫化物之潛勢,減低地下水酸化及硫化物造成之臭味問題。本研究之目的是以緩釋概念評估以脫硫渣進行1,2-DCA污染地下水在生物復育後所產生之異味及pH值控制之可行性。研究中以1,2-二氯乙烷為目標污染物,並以流通性較高之乳化型釋碳基質為碳源,並以批次實驗評估脫硫渣之添加對pH值減緩酸化、臭味降低及控制硫化物之效率。研究結果顯示,脫硫渣可在1 hr內將pH提高至11以上,硫酸亞鐵則可將pH降至4以下,顯示硫酸亞鐵有扮演中和脫硫渣之高鹼性之潛力。水中硫化物在初始pH為7之條件下,無論是硫酸亞鐵與脫硫渣之添加皆能有效地被去除,去除率約94%以上。此外,微生物批次試驗結果顯示,添加不同的材料,對於1,2-DCA生物降解有不同的影響,dehalococoides(DHC)菌數增加量為11.87、2.66及1.88倍。
Abstract
Soil and groundwater at many existing and former industrial areas and disposal sites are contaminated by chlorinated organic solvents, which are commonly found non-aqueous phase liquid (NAPL) compounds, that were released into the environment accidently or intentionally. The 1,2-dichloroethane (1,2-DCA or EDC) has been shown on induces hepatocellular carcinogens in mice and is a human carcinogen. Thus, 1,2-DCA was used as the target compound in this study. One cost-effective approach for the remediation of the chlorinated-solvent contaminated aquifers is the application of in situ anaerobic bioremediation. However, enhanced in situ bioremediation requires the injection of primary substrates, which would cause the acidification and odor problems of the subsurface environment. This would deteriorate the groundwater quality and cause the increase in maintenance cost. Furnace slag is a final waste material in the basic oxygen furnace steel making process. In blast furnace iron making, limestone (as fluxes) is added to react with the gangue minerals (iron ore and coke) to form iron slag. Desulfurization agent is added to remove the sulfur from the steel water, and the slag formed in the furnace, after being solidified, is called desulfurization slag (DS). Because DS has high pH characteristics (12.5), this limits its recycle and reuse. However, the slowly released hydroxide ions from the DS would minimize the acidification of the groundwater and the released metals would precipitate the sulfide to minimize the odor problem. The objective of this proposed study was to evaluate the feasibility of applying DS in situ at the DNAPL site to minimize the impact of low pH and odor problems caused by the bioremediation process. In this study, batch and column experiments were performed to evaluate the effects of DS addition on neutralization of acidified groundwater. Released chemicals from DS were analyzed and evaluated for their effects on sulfide precipitation and odor minimization. Results indicate that DS could increase the pH to 11 within 1 hr after its application. Ferrous sulfide could lower the pH to below 4 after application. This reveals that ferrous sulfide could neutralize the high pH caused by the DS addition. Approximately 94% of sulfide could be removed when DS or ferrous sulfide was added in the system. Addition of long-lasting substrate, DS, or ferrous sulfide could result in different 1,2-DCA removal rate. Increase in dehalococoides (DHC) population was observed after the addition of long-lasting substrate, DS, or ferrous sulfide. Results will be useful in designing a field-scale system to enhance the in situ bioremediation of chlorinated-solvent contaminated groundwater.
目次 Table of Contents
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 2
第二章 文獻回顧 3
1.1 土壤及地下水含氫化合物污染概況 3
1.1.1 含氯有機污染概況 3
1.1.2 1,2-二氯乙烷之性質與危害 5
1.1.3 1,2-二氯乙烷之傳輸與機制 8
2.2 土壤與地下水整治技術 9
2.2.1 地下水之生物整治技術 10
2.2.2 綠色整治技術 12
2.2.3 乳化型釋碳基質被動式生物反應牆 13
2.3 1,2-二氯乙烷降解機制 16
2.3.1 1,2-二氯乙烷生物反應機制 16
2.3.2 1,2-二氯乙烷非生物反應機制 24
2.4 現地地下水pH值及異味控制方法 26
2.4.1 酸化控制 26
2.4.2 異味控制 27
2.5 奈米零價鐵之應用 31
2.6 脫硫渣之資源化再利用 33
第三章 實驗設備與方法 38
3.1 研究流程 38
3.2 實驗材料與設備 40
3.2.1 實驗試藥 40
3.2.2 實驗儀器與設備 41
3.3 實驗設計與組別 43
3.3.1 硫化物控制之批次試驗 43
3.3.2 微生物厭氧批次試驗 44
3.4 實驗分析方法 48
3.4.1 水質分析 48
3.4.2 固體物成分分析 50
3.5 分子生物技術(菌相分析) 52
第四章 結果與討論 58
4.1 硫化物控制之批次試驗 58
4.1.1 pH值之變化 58
4.1.2 硫化物濃度之變化 61
4.1.3 批次實驗後之XRD掃描分析 64
4.2 微生物厭氧批次試驗 71
4.2.1 控制組 72
4.2.2 自然降解組 76
4.2.3 長效型基質組 80
4.2.4 硫酸亞鐵組 84
4.2.5 脫硫渣組 88
4.2.6 綜合討論 94
4.3 菌相分析結果 95
4.3.1 即時定量PCR偵測厭氧批次試驗之Dehalococcoides spp.菌種數量變化 95
4.3.2 變性梯度膠體電泳 98
第五章 結論與建議 100
5.1 結論 100
5.2 建議 102
參考文獻 103
參考文獻 References
André van Zomeren, Sieger R. van der Laan, Hans B.A. Kobesen, Wouter J.J. Huijgen, Rob N.J (2011) “Comans, Changes in mineralogical and leaching properties of converter steel slag resulting from accelerated carbonation at low CO2 pressure”, Waste Management, 31(11), 2236–2244.
Arnold WA, Roberts AL. Pathways and kinetics of chlorinated ethylene and Ashmita Arjoon, Ademola O. Olaniran , Balakrishna Pillay (2013) “Enhanced 1,2-dichloroethane degradation in heavy metal co-contaminated wastewater undergoing biostimulation and bioaugmentation”, Chemosphere, 93, 1826–1834.
Bard AJ, Parsons R, Jordan J. Standard potentials in aqueous solution. Marcel Borden, R,C, and Rodriguez, X. (2006) “Evaluation of Slow Release Substrates for Anaerobic Bioremediation”, Bioremediation Journal, 10(1-2), 59-69.
Borden, R.C. (2007) “Concurrent bioremediation of perchlorate and 1,1,1-trichloroethane in an emulsified oil barrier”, Journal of Contaminant Hydrology, 94(1-2), 13-33.
Boulding, J.R., (1996a) “USE A Environmental Engineerin Sourcebook”, Chel ea, MI.
Boulding, J.R., (1996b) “E A Environmental A e ment Sourcebook”, Ann Arbor Press.
Brar, S.K., Verma, M.R., Surampalli, Y., Misra, K., Tyagi, R.D. and N. Meunier, J.F. (2006) “Blais, Bioremediation of hazardous wastes - a review”, Practice Periodical of Hazardous, Toxic, and Radioactive Waste Management, 10(2), 59-72.
Brovelli, A., Barry, D.A., Robinson, C. and Gerhard, J.I. (2012) “Analysis of acidity production during enhanced reductive dechlorination using a simplified reactive transport model”, Advances in Water Resources, 43, 14-27.
Bruce, M. and Henry, P.G. (2010) “Biostimulation for Anaerobic Bioremediation of Chlorinated Solvents”, Environmental Remediation Technology, 357-423.
Cameron, M.L. and Borden, R.C. (2006) “Enhanced reductive dechlorination in columns treated with edible oil emulsion”, Journal of Contaminant Hydrology, 87(1-2), 54-72.

Cha, W., Kim, J., Choi, H. (2005) “Evaluation of steel slag for organic and inorganic removals in soil aquifer treatment”, Water Research, 40, 1034-1042.
Chaineau, C. H., ougeux, G., Yéprémian, C. and Oudot, J., (2005) “Effect of nutrient concentration on the biodegradation of crude oil and associated microbial population in the oil” Soil Biology and Biochemi try 37(8), 1490-1497.Charles R. Fitts (2013) “Groundwater Contamination”, Groundwater Science (Second Edition), 499–585.
Crane, R.A. and Scott, T.B. (2012) “Nanoscale zero-valent iron: Future prospects for an emerging water treatment technology”, Journal of Hazardous Materials, 211-212, 112-125.
Denis O’Carroll, Brent Sleep, Magdalena Krol, Hardiljeet Boparai, Christopher Kocur (2013) “Nanoscale zero valent iron and bimetallic particles for contaminated site remediation”, Advances in Water Resources 51 (2013) 104–122.
Dimitrova, S.V. (2002) “Use of granular slag columns for lead removal”, Water Research, 36, 4001-4008.
Dinglasan-Panlilio, M.J., Dworatzek, S., Mabury, S.A., and Edwards, E.A. (2006) “Microbial oxidation of 1,2-dichlorethane under anoxic conditions with nitrate as electron acceptor in mixed and pure cultures”, FEMS Microbiol. Ecol., 56, 355-364.
Drizo, A., Cummings J., Weber, D., Twohig, E., Druschel, G. and Bourke, B. (2008) “New Evidence for Rejuvenation of Phosphorus Retention Capacity in EAF Steel Slag”, Environmental Science and Technology, 42, 6191-6197.
Egli, C., Scholtz, R., Cook, A.M., Leisinger, T. (1987) “Anaerobic dechlorination of tetrachloromethane and 1,2-dichloroethane to degradable products by pure cultures of Desulfobacterium sp. and Methanobacterium sp”, FEMS Microbiol. Lett., 43, 257-261.
Elochina S.N., Ryzhenko B.N. (2013) “Formation of (Fе,Mg)SO4.7H2O (kirovite) due to sulfide oxidation in the Ural submerged massive sulfide mines ”, Procedia Earth and Planetary Science, 7, 240- 243.
Elsa S. N., Shanti N. Desai, Prakash V. Desai (2010), “Effect of ferrous sulphate on aspartate and alanine aminotransferases of brain of Tilapia mossambica”, Food and Chemical Toxicology, 48, 490-494.
Charles R. Fitts (2013), “Groundwater science”, Elsevier Science.
Gillham R.W., Vogan J, Gui L, Duchene M, Son J. Iron barrier walls for Gupta, S. K., S. C. Mali. (2008) “Reductive dechlorination of 1,2-Dichloroethane using anaerobic sequencing batch reactor (asbr)”, Water science & Technology. 57(2), 225-229.
Hage, J.C. and Hartmans, S. (1999) “Monooxygenase mediated 1,2-dichloroethane degradation by Pseudomonas sp. strain DCA1”, Appl. Environ. Microbiol., 65, 2466-2470.
Hartmann, E. M., Badalamenti, J. P., Krajmalnik-Brown, R., and Halden, R. U. (2012). Quantitative PCR for tracking the megaplasmid-borne biodegradation potential of a model sphingomonad. Applied and environmental microbiology,78(12), 4493-4496.
Harkness, M., Fisher, A., Lee, M.D., Mack, E.E., Payne, J.A., Dworatzek, S., Roberts, J., Acheson, C., Herrmann, R. and Possolo, A. (2012) “Use of statistical tools to evaluate the reductive dechlorination of high levels of TCE in microcosm studies”, Journal of Contaminant Hydrology, 131(1-4), 100-118.
He, J., Sung, Y., Krajmalnik-Brown, R., Ritalahti, K.M. and Loffler, F.E. (2005) “Isolation and characterization of Dehalococcoides sp. Strain FL2, a trichloroethene (TCE) and cis-1,2-dichloroethene-respiring anaerobe”, Environmental Microbiology, 7, 1442-1450.
Hedström, A. and Rastas, L. (2006) “Methodological aspects of using blast furnace slag for waste-water phosphorus removal”, Journal of Environmental Engineering, 132, 1431-1438.
Hirschorn, S.K., Dinglasan-Panlilio, M.J., Edwards, E.A., Lacrampe-Couloume, G. and Lollar, B.S. (2007) “Isoope analysis as a natural reaction probe to determine mechanisms of biodegradation of 1,2-dichloroethane”, Environ. Microbiol., 9, 1651-1657.
Holliger, C., Schraa G., Stupperich E., Stams, A. J. M., and Zehnder, A. J. B. (1992) “Evidence for the involvement of corrinoids and factor-F430 in the reductive dechlorination of 1,2-dichloroethane by Methanosarcina barkeri”, J. Bacteriol., 174, 4427-4434.
Hunkeler, D., and Aravena, R. (2000) “Evidence of substantial carbon isotope fractionation among substrate, inorganic carbon, and biomass during aerobic mineralization of 1,2- dichloroethane by Xanthobacter autotrophicus”, Appl Environ Microbiol, 66, 4870-4876.
Hunter, W. J. (2005) “Injection of Innocuous Oils to Create Reactive Barriers for Bioremediation: Laboratory Studies”, Journal of Contaminant Hydrology, 80, 31-48.
Hunter, W.J. and Shaner, D.L. (2009) “Nitrogen limited biobarriers remove atrazine from contaminated water: Laboratory studies”, Journal of Contaminant Hydrology, 103(1-2), 29–37.
Hurowitz, J.A., Tosca, N.J., Dyar, M.D. (2009) “Acid production by FeSO4 center dot nH(2)O dissolution and implications for terrestrial and martian aquatic systems”, AMERICAN MINERALOGIST, 9, 4409-414.
Irene Sánchez-Andrea, Jose Luis Sanz, Martijn F.M. Bijmans, Alfons J.M. Stams (2014) “Sulfate reduction at low pH to remediate acid mine drainage”, Journal of Hazardous Materials 269, 98–109.
Inbakandan, D., Murthy, P.S., Venkatesan, R. and Khan, S.A., (2010) “16S rDNA sequence analysis of culturable marine biofilm forming bacteria from a ship's hull”, Biofouling, 26(8), 893-899.
Janssen, D.B., Scheper, A. and Witholt, B. (1984) “Biodegradation of 2-chloroethanol and 1,2-dichloroethane by pure bacterial cultures”, Invertebr. Biotechnol., 169-178.
Jha, V.K., Kameshima, Y., Nakajima, A. and Okada, K. (2004) “Hazardous ions uptake behavior of thermally activated steel-making slag”, Journal of Hazardous Materials, 114, 139-144.
Jha, V.K., Kameshima, Y., Nakajima, A. and Okada, K. (2008) “Utilization of steel-making slag for the uptake of ammonium and phosphate ions from aqueous solution”, Journal of Hazardous Materials, 156, 156-162.
Johansson, L. (1999a) “Industrial by-products and natural substrata as phosphorus sorbents”, Environmental Technology, 20, 309-316.
Johansson, L. (1999b) “Blast furnace slag as phosphorus sorbents-column studies”, The Science of the Total Environment, 229, 89-97.
Jonathan P. Gramp, Jerry M. Bigham, F. Sandy Jones, Olli H. Tuovinen (2010) “Formation of Fe-sulfides in cultures of sulfate-reducing bacteria”, Journal of Hazardous Materials, 175, 1062–1067.
K. Matern, T. Rennert, T. Mansfeldt (2013) “Molybdate adsorption from steel slag eluates by subsoils”, Chemosphere, 93(9), 2108–2115.
Kanew, S.R., Choi, H., Kim, J.Y., Vigneswaran, S. and Shim, W.G. (2006) “Removal of arsenic(III) from groundwater using low-cost industrial by-products - Blast furnace slag”, Water Quality Research Journal Of Canada, 41, 130-139.
Kao, C.M., Huang, W.Y., Chang, L.J., Chien, H.Y. and Hou, F. (2005) “Application ofmonitored natural attenuation to remediate a petroleum- hydrocarbon spill site”, Water Science and Technology, 53, 321-328.
Klecka, G.M., Carpenter, C.L., and Gonsior, S.J. (1998) “Biological transformations of 1,2-dichloroethane in subsurface soils and groundwater”, J. Contam. Hydrol., 34, 139-154.
Koide. (1993) “Research on using BOF slag for road construction”, Nakayama Steel Works Technical Report, Osaka, Japan.
Korkusuz, E.A., Beklioğlu, M. and Demirer, G.N. (2005) “Use of blast furnace granulated slag as a substrate in vertical flow reed beds:Field application”, Bioresource Technology, 98, 2089-2101.
Kuo, Y.C., Chengb, S.F., Liuc, P.W.G., Chioua, H.Y. and Kao, C.M. (2012) “Application of enhanced bioremediation for TCE-contaminated groundwater: a pilot-scale study”, Desalination and Water Treatment, 41(1-3), 364-371.
Kuo, Y.C., Liu, J.K., Chien, H.Y., Chen, C.C. and Kao, C.M. (2012) “Remediation of TCE-contaminated groundwater using integrated biosparging and enhanced bioremediation system”, Research Journal of Chemistry and Environment, 16(2), 37-47.
Lee, S.H., Vigneswaran, S. and Moon, H. (1997) “Adsorption of phosphorus in saturated slag media columns”, Separation and Purification Technology, 12, 109-118.
Li T, Farrell J. Reductive dechlorination of trichloroethene and carbon Lieberman, M.T., Borden, R.C., Zawtocki, C., May, I. and Casey, C. (2005). “Long term TCE source area remediation using short term emulsified oil substrate (EOS®) recirculation”, The 21st Annual International Conference on Soils, Sediments, and Water, University of Massachusetts at Amherst, 17-20.
Liu Y, Majetich SA, Tilton RD, Sholl DS, Lowry GV. TCE dechlorination rates, Loffler, F.E. and Edwards, E.A. (2006) “Harnessing microbial activities for environmental cleanup”. Current Opinion in Biotechnology, 17(3), 274-284.
Long, C.M. and Borden, R.C. (2006) “Enhanced reductive dechlorination in columns treated with edible oil emulsion”, Journal of Contaminant Hydrology, 87(1-2), 54-72.
Long, C.M. and Borden, R.C. (2006) “Enhanced reductive dechlorination in columns treated with edible oil emulsion”, Journal of Contaminant Hydrology, 87(1-2), 54-72.
Manoli, G., Chambon, J.C., Bjerg, P.L., Scheutz, C., Binning, P.J. and Broholm, M.M. (2012) “A remediation performance model for enhanced metabolic reductive dechlorination of chloroethenes in fractured clay till”, J. of Contaminant Hydrology, 131(1-4), 64-78.
Marie Schmidt, Sascha Lege, Ivonne Nijenhuis (2014) “Comparison of 1,2-dichloroethane, dichloroethene and vinyl chloride carbon stable isotope fractionation during dechlorination by two Dehalococcoides strains” water research, 52,146-154.
Marzorati M, Borin S, Brusetti L, Daffonchio D, Marsilli C, Carpani G, de Ferra F. (2006) “Response of 1,2-dichloroethane-adapted microbial communities to ex-situ biostimulation of polluted groundwater”, Biodegradation, 17, 41-56.
Leah J. Matheson , Paul G. Tratnyek (1994), “Reductive Dehalogenation of Chlorinated Methanes by Iron Metal”, Environ. Sci. Technol., 28 (12), 2045–2053.
Matturro, B., Aulenta, F., Majone, M., Papini, M.P., Tandoi, V. and Rossetti, S. (2012) “Field distribution and activity of chlorinated solvents degrading bacteria by combining CARD-FISH and real time PCR”, New Biotechnology, 30(1), 23-32.
Maym´o-Gatell, X., Anguish, T., Zinder, S.H. (1999) “Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by Dehalococcoides ethenogenes 195”, Appl. Environ. Microbiol., 65, 3108-3113
McCarty, P.L., Chu, M.Y. and Kitanidis, P.K. (2007). “Electron donor and pH relationships for biologically enhanced dissolution of chlorinated solvent DNAPL in groundwater”, European Journal of Soil Biology, 43(5-6), 276-282.
Miyata, R., Adachi, K., Tani, H., Kurata, S., Nakamura, K., Tsuneda, S., Sekiguchi, Y. and Noda, N. (2010) “Quantitative Detection of Chloroethene-reductive Bacteria Dehalococcoides spp. Using Alternately Binding Probe Competitive Polymerase Chain Reaction”, Molecular and Cellular Probes, 24, 131-137.
Nehrenheim, E., Rodriguez Caballero, A., Odlare, M. and Johansson Westholm, L. (2009) “Waste-water phosphorus removal by blast furnace slag: Laboratory and field investigations in Sweden”, In Proceedings of 3rd Decentralised Conference on Water and Wastewater International Network, Kathmandu, Nepal, 10-13.
Olaniran, A.O., S. Naidoo, M. G. Masango, S. Pillay. (2007) “Aerobic biodegradation of 1,2-Dichloroethane and 1,3-Dichloropropene by bacteria isolated from a pulp mill wastewater effluent in South Africa”, Biotechnology and Bioprocess Engineering., 12, 276-281.
Oldenhuis, R., Vink, R.L.J.M., Janssen, D.B. and Withholt, B. (1989) “Degradation of Chlorinated Aliphatic Hydrocarbons by Methylosinus trichosporium OB3b Expressing Soluble Methane Monooxygenase”, Appl. Environ. Microbiol., 55, 2819-2826.
Ortiz, N., Pires, MAF. and Bressiani, J.C. (2001) “Use of steel converter slag as nickel adsorber to wastewater treatment”, Waste Management, 21, 631-635.
Payne, F.C., Suthersan, S.S., Nelson, D.K., Suarez, G., Tasker, I. and Akladiss, N. (2006) “Enhanced reductive dechlorination of PCE in unconsolidated soils”, Remediation 17(1), 5-21.
Pfeiffer, P., Bielefeldt, A.R. Illangasekare, T. and Henry, B. (2005a) “Physical properties of vegetable oil and chlorinated ethene mixtures”, Journal of Environmental Engineering-ASCE, 131(10), 1447-1452.
Pfeiffer, P., Bielefeldt, A.R., Illangasekare, T. and Henry B. (2005b) “Partitioning of dissolved chlorinated ethenes into vegetable oil”, Water Research, 39(18), 4521-4527.
Philips, J., Muylder, R.V., Springael, D. and Smolders, D. (2012) “Electron donor limitations reduce microbial enhanced trichloroethene DNAPL dissolution: A flux-based analysis using diffusion-cells”, Chemosphere, In Press, Corrected Proof-Note to users.
Rastas Amofah, L. and Hanæus, J. (2006) “Nutrient recovery in a small scale wastewater treatment plant in cold climate”, Vatten, 62, 355-368.
Ray S., Chowdhury, N., Lalman, J.A., Seth, R. and Biswas, N. (2008). “Impact of initial pH and linoleic acid (C18 : 2) on hydrogen production by a mesophilic anaerobic mixed culture”, Journal of Environmental Engineering-ASCE, 34(2), 110-117.
Robinson, C., Barry, D.A., McCarty, P. L., Gerhard, J. I. and Kouznetsova, I. (2009). “pH control for enhanced reductive bioremediation of chlorinated solvent source zones”, Science of the Total Environment, 407(16), 4560-4573.
Rong Yu, Hair S. Peethambaram, Ronald W. Falta, Matthew F. Verce, James K. Henderson, Christopher E. Bagwell, Robin L. Brigmon and David L. Freedman Appl. Environ. Microbiol. 2013, 79(4), 1359.
Sandrone, C., P. Goria, M. Carboni, L. Micheletti. (2009) “Remediation of 1,2-Dichloroethane (1,2-DCA) and vinyl chloride (VC) contaminated groundwater: lab and field pilot test”, Proceedings of The International Conference BOSICON.
Scheutz, C., Durant, N.D., Hansen, M. and Bjerg, P.L. (2011) “Natural and enhanced anaerobic degradation of 1,1,1-trichloroethane and its degradation products in the subsurface - A critical review”, Water Research, 45(9), 2701-2723.
Schipper, L.A., Robertson, W.D., Gold, A.J., Jaynes, D.B. and Cameron, S.C. (2010) “Denitrifying bioreactors-An approach for reducing nitrate loads to receiving waters”, Ecological Engineering, 36(11), 1532–1543.
Seigrist, R.L. (2002) “Fundamentals of In Situ Chemical Oxidation (ISCO)”, Teleconference of In Situ Treatment of Groundwater Contaminated with Non-aqueous Phase Liquids, 10-11.
Seigrist, R.L., Urynowicz, M.A., West, O.R., Crimi, M.L. and Lowe, K.S. (2001). “Principle and Practices of In Situ Chemical Oxidation Using Permanganate”, Battelle Press.
Sheng, G., Li, Q., Zhai, J. and Li, F. (2007) “Self-cementitious properties of fly ashes from CFBC boilers co-firing coal and high-sulphur petroleum coke”, Cement and Concrete Research, 37, 871-876.
Shukla, A.K., Vishwakarma, P., Upadhyay, S.N., Tripathi, A.K., Prasana, H.C. and Dubey S.K. (2009) “Biodegradation of trichloroethylene (TCE) by methanotrophic community”, Bioresource Technology, 100(9), 2469-2474.
Satoshi Asaoka, Hideo Okamura, Ryosuke Morisawa, Hiroshi Murakami, Keiichi Fukushi, Toshihiro Okajima, Misaki Katayama, Yasuhiro Inada, Chihiro Yogi, Toshiaki Ohta (2013) “Removal of hydrogen sulfide using carbonated steel slag”, Chemical Engineering, 28,843–849.
Stucki, G., Krebser, U. and Leisinger, T. (1983) “Bacterial growth on 1,2-dichloroethane”, Experentia, 39, 1271-1273.
U.S. Environmental Protection Agency (EPA) (2000) “Engineered Approaches to In Situ Bioremediation of Chlorinated Solvents: Fundamentals and Field Applications”, EPA, 542-R-00-008.
U.S. Environmental Protection Agency (EPA) (2007) “Treatment technologies for site cleanup: annual status report (twelfth edition)”, EPA, 542-R-07-012
U.S. Environmental Protection Agency (EPA) (2013) “Drinking water contamints”, EPA.
Urynowicz, M. A. and Siegrist, R. L. (2000) “Chemical Degradation of TCE DNAPL by Permanganate”, In: Proceedings of the Second International Conference on Remediation of Chlorinated and Recalcitrant Compounds, Monterey, CA, 75-82.
Wang, S., Yang, J., Loua, S.J. and Yang, J. (2010) “Wastewater treatment performance of a vermifilter enhancement by a converter slag-coal cinder filter”, Ecological Engineering, 36, 489-494.
Wei, Z. and Seo, Y. (2010) “Trichloroethylene (TCE) Adsorption Using Sustainable Organic Mulch. Journal ofHazardousMaterials”, Article in Press.
Westholm, L.J. (2006) “Substrates for phosphorus removal-Potential benefits for on-site wastewater treatment”, Water Research, 40, 23-36.
Widdowson, M.A. (2004) “Modeling Natural Attenuation of Chlorinated Ethenes Under Spatially Varying Redox Conditions”, Biodegradation, 15(6), 435-451.
Wu, Y.W., Huang, G.H., Chakma, A. and Zeng, G.M. (2005) “Separation of petroleum hydrocarbons from soil and groundwater through enhanced bioremediation”, Energy Sources, 27, 221-232.
Xu Liu, Bhanu Prakash Vellanki, Bill Batchelor, Ahmed Abdel-Wahab (2014) “Degradation of 1,2-dichloroethane with advanced reduction processes (ARPs) Effects of process variables and mechanisms”, Chemical Engineering Journal, 237, 300–307
Xue, Y.J., Hou, H.B., and Zhu, S.J. (2009) “Adsorption removal of reactive dyes from aqueous solution by modified basic oxygen furnace slag: Isotherm and kinetic study”, Chemical Engineering Journal, 147, 272-279.
Yang, J., Wang, S., Lu, Z.B., Yang, J. and Lou, S.J. (2009) “Converter slag-coal cinder columns for the removal of phosphorous and other pollutants”, Journal of Hazardous Materials, 168, 331-337.
Yokota, T., Fuse H., Omori T., and Minoda Y. (1986) “Microbial dehalogenation of haloalkanes mediated by oxygenase or halidohydrolase”, Agric. Biol. Chem., 50, 453-460.
Yu ZB, Qiao MH, Li HX, Deng JF. Preparation of amorphous Ni–Co–B alloys and the effect of cobalt on their hydrogenation activity. Appl Catal A – Gen
Yu-Ting Wei, Shian-chee Wu, Shi-Wei Yang, Choi-Hong Che, Hsing-Lung Lien, De-Huang Huang. “Biodegradable surfactant stabilized nanoscale zero-valent iron for in situ treatment of vinyl chloride and 1,2-dichloromethane”.
Zawtocki, C. (2005). “Naturally cleaner groundwater-soybeanbased emulsion is proving to decontaminate groundwater more quickly than traditional remediation methods”, The Military Engineer, 97, 55-56.
Zemb, O., Lee, M., Low, A. and Manefield, M. (2010) “Reactive iron barriers: a niche enabling microbial dehalorespiration of 1,2-dichloroethane”, Appl. Microbiol. Biotechnol., 88(1), 319-325.
中國鋼鐵股份有限公司,1999,爐石利用推廣手冊,中鋼公司工安環保處。
中國鋼鐵股份有限公司,2010,中鋼企業社會責任報告書。
翁明偉,2007,脫硫渣與水淬爐石資源化於無卜特蘭水泥CLSM可行性之研究,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。
張信義,2004,煉鋼爐石去除水中砷及磷之研究,屏東科技大學環境工程與科學系碩士論文。
梁詠祥,2012,煉鋼脫硫渣之特性分析及再利用潛勢評估,國立中山大學環境工程研究所碩士論文。
陳冠豪,2003,以溶膠凝膠法製備MnOX/Al2O3觸媒焚化處理三氯乙烯之研究,國立成功大學環境工程學系碩士論文。
陳美伶,2010,”鎳鐵氧磁體及脫硫渣誘導H2O2處理反應黑染料之研究”,國立成功大學環境工程學系碩士論文。
蔡在唐、高志明、陳俊廷,2009,”應用爐石催化現地化學氧化以整治土壤及地下水污染”,工業污染防治季刊,111,75-104.
蔡敏行,2001,”鋼鐵爐渣應用於海洋生態保育-日本爐渣應用概況介紹”,簡8報資料。
環保署,2009,台灣塑膠工業股份有限公司仁武廠查證結果報告書。
環保署,2010,行政院環保署公告網,http://atftp.epa.gov.tw/announce/。
簡華逸,2010,以現地生物復育法整治三氯乙烯污染之場址,國立中山大學環境工程研究所博士論文。
譚筱慈,2008,脫硫渣與水淬爐石資源化於無水泥混凝土之研究,國立高雄應用科技大學土木工程與防災科技研究所碩士論文。
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.189.170.17
論文開放下載的時間是 校外不公開

Your IP address is 18.189.170.17
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code