Responsive image
博碩士論文 etd-0805114-175215 詳細資訊
Title page for etd-0805114-175215
論文名稱
Title
膽固醇型液晶在兆赫波光電子學的應用
Polarization Independent THz Photonics : Phase Shifter and Tunable Bandpass Filter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
100
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-22
繳交日期
Date of Submission
2014-09-05
關鍵字
Keywords
相位調變器、兆赫波、偏極獨立、帶通濾波器、膽固醇型液晶
cholesteric liquid crystal, phase shifter, THz, bandpass filter, polarization independent
統計
Statistics
本論文已被瀏覽 5720 次,被下載 0
The thesis/dissertation has been browsed 5720 times, has been downloaded 0 times.
中文摘要
兆赫波光電子學因為在生物醫學、光譜學等應用的驚人前例,已成為光電產業一個不斷成長的領域,在各式應用中,偏極的相依性往往限制了其應用的彈性。 本篇論文中,我們嘗試利用膽固醇型液晶的在兆赫波段無偏振依存的特性,探討它在兆赫波光電子學的可能應用。
首先,我們示範了利用電控液晶來製作相位調變量可超過 2π 且調變速度達到 0.5sec 的相移器,這是首次將速度加速至低於秒級的兆赫波相位調變器,並討論了在過程中發現的因厚度與施加電壓過大而導致 optical bounce 的現象,並給出當施加電壓到達一臨界點時,反應速度便與厚度 直接相關的結論。
此外,我們也開發了一偏極獨立的兆赫波段電控可調式帶通濾 波器,半高寬(FWHM)約為11GHz,截止帶(stop band)從 367GHz 到 452GHz,品 質因子(Quality factor)約為 38,調變範圍為 14GHz,並討論它在即時光譜儀等應用的可能性。
Abstract
In recent years, terahertz (THz) photonics have attracted plenty of attraction due to its remarkable progress. As its potential in the field of communication, spectrum analysis and so on, the demand of high performance quasi-optic components such as phase shifters, band pass filters or polarizers is strongly increasing. However, these devices need polarizer or other polarization control system to achieve polarization independency.
The first part of this thesis, polarization independent electrical controlled 2p THz phase shifter with sub-second modulation speed was demonstrated by using cholesteric liquid crystal (CLC). The device was constructed by stacking three CLC layers. Each CLC layer with thickness of 1.5mm was sandwiched by two fused silica glasses coated with ITO for electrode. The CLC was made by chiral dopant mixed in a nematic liquid crystal (NLC) host BL006 and pitch length is around 20μm. The structure of CLCs became visible homeotropic texture from invisible focal conic texture when the driving voltage increases from zero till over 360V. The modulation speed increases as the driving voltage increasing. The response time up to 500 ms was successfully achieved using the multi-layer structure. The polarization independence of this component was performed about l/60. Feasibility of 100ms modulation speed was discussed as well.
Second, we demonstrated a polarization independent tunable THz band pass filter based on one-dimensional photonic crystal cavity and using CLC. The CLC layer, made by chiral dopant mixed in a nematic liquid crystal (NLC) host BL006 with around 20μm pitch length, was sandwiched by two Bragg mirror with half-wavelength optical thickness of 650μm. The THz Fabry-Perot(FP) is demonstrated using two three-pairs THz high reflective structures. The stop band of 85GHz and 3dB bandwidth of 11GHz are demonstrated. The corresponding Q-factor is about 38. By filling with CLC in the THz FP, the frequency can be tuned from 406GHz to 420GHz as applying voltage on CLC cell. This is the first time to our best knowledge that the electrical controlled THz narrow-band-pass is polarization independent and with tuning rang of 14GHz.
目次 Table of Contents
中文論文審定書 I
英文論文審定書 II
致謝 III
摘要 V
Abstract VI
目錄 VIII
圖次 X
表次 XIII
第一章 緒論 1
第二章 兆赫波系統理論與液晶簡介 6
2.1 光導天線輻射機制介紹 8
2.2 電光晶體取樣法 11
2.3 兆赫波時域解析光譜系統 16
2.4 液晶簡介 19
2.4.1液晶介紹 19
2.4.2 液晶分類 19
2.5 液晶的物理特性 22
2.5.1 秩序參數 22
2.5.2 光學異向性 22
2.5.3 介電異向性 24
2.5.4 液晶的連續彈性理論 25
第三章 兆赫波段下偏極獨立的高速電控相位調變器 27
3.1兆赫波段下相位調變方式介紹 29
3.1.1 磁控向列型液晶兆赫波相位調變器 29
3.1.2 電控向列型液晶兆赫波相位調變器 31
3.2 膽固醇型液晶與反應時間量測介紹 34
3.2.1 膽固醇型液晶介紹 34
3.2.2 反應時間量測介紹 40
3.3 不同結構對相位調變反應時間的影響 44
3.4 驅動電壓下液晶反應時間shooting現象的討論 50
3.5 偏振獨立性的2π相位調變器 55
3.6 結論 58
第四章 偏極獨立的兆赫波帶通濾波器 59
4.1 四分之一波長multilayer與Fabry-Perot 共振腔簡介 60
4.1.1 四分之一波長multilayer 簡介 60
4.1.2 Fabry-Perot 共振腔簡介 62
4.2 週期性堆疊結構構成之布拉格反射鏡DBR模擬 67
4.3 兆赫波段下可調式帶通濾波器 69
4.3.1 帶通濾波器 69
4.3.2 電控可調帶通濾波器 73
4.4 偏振獨立的兆赫波段可調式帶通濾波器 75
4.5 結論 76
第五章 總結與未來展望 77
5.1 總結 77
5.2 未來展望 78
參考文獻 79
參考文獻 References
[1] B. Ferguson and X.C. Zhang, “Materials for terahertz science and technology,” Nature Materials 1, 26-33 (2002).
[2] Global Warming Art, http://www.globalwarmingart.com
[3] D. Dragoman and M. Dragoman, “Terahertz fields and applications,” Prog Quantum Electron 28, 1-66 (2004).
[4] M. Naftaly and R. E. Miles, “Terahertz time-domain spectroscopy for material characterization,” Proc. IEEE 95, 1658–1665 (2007).
[5] J. F. Federici, B. Schukin, F. Huang, D. Gray, R. Barat, F.Oliveira and D. Zimdars, “THz imaging and sensing for security applications—explosives, weapons and drugs,” Semicond. Sci. Technol 20, 266-280 (2005).
[6] W. L. Chan, J. Deibeland and D. M. Mittleman, “Image with terahertz radiation,” Rep. Prog. Phy 70, 1352-1379 (2007).
[7] A. Menikh, R. MacColl, C. A. Mannella and X. C. Zhang, “Terahertz Biosensing Technology: Frontiers and Progress,” ChemPhysChem. 3, 655-658 ( 2002).
[8] R. J. Foltynowicz and R. E. Allman, “Terahertz Time-Domain Spectroscopy of Atmospheric Water Vapor From 0.4 to 2.7 THz,” Sandia National Laboratories, SAND2005-5709 (2005)
[9] D. M. Mittleman, R. H. Jacobson and M. C. Nuss, “T-ray imaging,” IEEE J. Sel. Top. Quatum Eletron. 2, 689-692 (1996).
[10] T. Kürner, “Towards Future THz Communication System,” Terahertz Science and Technology 5, 11-17 (2012).
[11] R. Piesiewicz, T. Kleine-Ostmann, N. Krumbholz, D. Mittleman, M. Koch, J. Schoebel and T. Kürner, “Short-Range Ultra-Broadband Terahertz Communications: Concepts and Perspectives,” IEEE Antennas and Propagation Magazine 49, 24–39 (2007).
[12] C. Jastrow, K. Münter, R. Piesiewicz, T. Kürner, M. Koch and T. Kleine-Ostmann, “300 GHz Transmission System,” IET Electronics Letters 44, 213–214 (2008).
[13] M. J. Fitch and R. Osiander, “Terahertz waves for communication and sensing,” Johns Hopkins APL Technical. Digest, 25, 348-55 (2004)
[14] C. F. Hsieh, R. P. Pan, T. T. Tang, H. L. Chen and C.L. Pan, “Voltage- controlled liquid-crystal terahertz phase shifter and quarter-wave plate,” Opt. Lett. 31, 1112-1114 (2006).
[15] H. Y. Wu, C. F. Hsieh, T. T. Tang, R. P. Pan, and C. L. Pan, “Optical properties and potential applications of ɛ-GaSe at terahertz frequencies,” IEEE Photon. Technol. Lett. 18, 1488-1490 (2006).
[16] X. W. Lin, J. B. Wu, W. Hu, Z. G. Zheng, Z. J. Wu, G. Zhu, F. Xu, B. B. Jin, and Y. Q. Lu, “Self-polarizing terahertz liquid crystal phase shifter,” AIP Adv. 1, 032133 (2011).
[17] Z. Huang, H. Park, E. P. J. Parrott, H. P. Chan, and E. P. MacPherson, “Robust Thin-Film Wire-Grid THz Polarizer Fabricated Via a Low-Cost Approach,” IEEE Photon. Technol. Lett. 25, 81-84 (2013).
[18] E. S. Lee and T.-I. Jeon, “Tunable THz notch filter with a single groove inside parallel-plate waveguides,” Opt. Express 20, 29605 (2012).
[19] O. Paul, R. Beigang and M. Rahm,” Highly selective terahertz bandpass filters based on trapped mode excitation,” Opt. Express 17, 18590 (2009).
[20] N. Vieweg, N. Born, I. Al-Naib, and M. Koch, ”Electrically tunable terahertz notch filters,” J. Infrared Milli. Terahz Waves 33, 327 (2012).
[21] 柯思宇,“高功率窄頻可調兆赫波輻射研製與應用,” 國立中山大學光電工程研究所 碩士論文(2011).
[22] M. van Exter, Ch. Fattinger and D. Grischkowsky, “Terahertz time-domain spectoscopy of water vapor,” Opt. Lett. 14, 1128–1130 (1989).
[23] G. L. Carr, M. C. Martin, W. R. McKinney, K. Jordan, G. Neil and G. P. Williams, “High-power terahertz radiation from relativistic electrons,” Nature 420,153-156 (2002).
[24] BATOP, http://www.batop.de/products/terahertz/photoconductive-antenna
[25] C. Lee, “Picosecond optoelectronic switching in GaAs,” Appl. Phys. Lett. 30, 84-86 (1977).
[26] D. H. Auston, “Picosecond optoelectronic switching and gating in silicon,” Appl. Phys. Lett. 26, 101-103 (1975).
[27] G. Mourou, C. Stancampiano, A. Austonetti and A. Orszag, ” Picosecond microwave pulses generated with a subpicosecond laser-driven semiconductor switch,” Appl. Phy. Lett. 39, 295 (1981).
[28] P. U. Jepsen, R. H. Jacobsen and S. R. Keiding, “Generation and detection of terahertz pulses from biased semiconductorantennas,” J. Opt. Soc. Am. B. 13, 2424-2436 (1996).
[29] Z. Piao, M. Tani and K. Sakai, “Carrier dynamics and terahertzradiation in photoconductive antennas,” Jpn. J. Appl. Phys. 39, 96-100 (2000).
[30] http://www.batop.de/products/terahertz/photoconductive-antenna/data-sheet/mounts/mounted_PCA1-h.pdf
[31] P. Smith, D. Auston and M. Nuss, “Sub-picosecond photoconducting dipole antennas”, IEEE J. Quantum Electron 24, 255-260 (1988).
[32] Z. G. Lu, P. Campbell and X. C. Zhang, “ Free-space electro-optic sampling with a high-repetition-rate regenerative amplifier laser,” Appl. Phys. Lett. 71 , 593-595 (1997).
[33] P. C. M. Planken, H.K. Nienhuys, H.J. Bakker and T. Wenckebach, “Measurement and caculation of the orientation dependence of terahertz pulse detection in ZnTe,” J. Opt. Soc. Am.B 18, 313-317 (2001).
[34] 林恭如,“砷離子佈植砷化鎵超快光電特性及其應用之研究” 國立交通大學光電工程研究所 博士論文 (1996)
[35] P. Smith, D. Auston and M. Nuss, “Subpicosecond photoconducting dipole antennas” , IEEE J. Quantum Electron 24, 255-260 (1988).
[36] D. H. Auston, K. P. Cheung, J. A. Valdmanis and D. A. Kleinman, “Cherenkov radiation from femtosecond optical pulses in electro-optic media,” Phys. Rev. Lett. 53, 1555-1558 (1984).
[37] C. Fattinger and D. Grischkowsky, “Point source terahertz optics,” Appl. Phys. Lett. 53, 1480-1482 (1988).
[38] http://www.spectra-physics.com/documents/datasheets/Mai_Tai_Ultrafast_Lasers_SP.pdf
[39] F. Reintzer, “Beiträge zur Kenntnis des Cholesterins,” Monatsh.Chem.9, 421-441(1888).
[40] O. Lehmann, “Über fliessende Krystalle,” Z. Phys. Chem. 4,462-472 (1889).
[41] S. Singh and D.A. Dunmur, “Liquid Crystal:Fundamentals,” World Scientific, Singapore (1990).
[42] P. J. Collings and M. Gird, “Introduction to Liquid Crystals Chemistry and Physics”, Taylor & Francis Ltd (1997).
[43] 田民波,“TFT 液晶顯示原理與技術,” 五南圖書出版公司(2008)
[44] 林宗賢,“液晶光子晶體雷射現象與其光控制研究”, 國立成功大學物理研究所 (2004).
[45] L. P. G. de Gennes and J. Prost, “The physics of liquid crystal”, 2nd ed., Clarendon Press, Oxford (1993)
[46] Daniel Mittleman, “Terahertz Imaging—in Sensing with THz radiation,” Spring-Verlag (2002).
[47] C. S. Yang, C. J. Lin, R. P. Pan, C. T. Que, K. Yamamoto, M. Tani and C. L. Pan, “The complex refractive indices of the liquid crystal mixture E7 in the terahertz frequency range,” J. Opt. Soc. Am. B. 27, 1866–1873 (2010).
[48] R. P. Pan, C. F. Hsieh, C. L. Pan and C. Y. Chen, “Temperature-dependent optical constants and birefringence of nematic liquid crystal 5CB in the terahertz frequency range,” J. Appl. Phys. 103, 093523 (2008).
[49] N. Vieweg, M. K. Shakfa and M. Koch, “BL037: A nematic mixture with high terahertz birefringence,” Opt. Commun. 284, 1887–1889 (2011).
[50] T. R. Tsai, C. Y. Chen, R. P. Pan, C. L. Pan and X. C. Zhang, “Room Temperature Electrically Controlled Terahertz Phase Shifter,” IEEE Microw. Wireless Compon. Lett. 14, 77–79 (2004).
[51] C. Y. Chen, T. R. Tsai, C. L. Pan and R. P. Pan, “Room Temperature THz Phase Shifter Based on Magnetically Controlled Birefringence in Liquid Crystals,” Appl. Phys. Lett. 83, 4497-4499 (2003).
[52] C. Y. Chen, C. F. Hsieh, Y. F. Lin, R. P. Pan and C. L. Pan, ”Magnetically tunable room-temperature 2π liquid crystal terahertz phase shifter,” Opt. Express 12, 2625-2630 (2004)
[53] B. Ferguson and X. C. Zhang, “Materials for terahertz science and technology,” Nature Mater. 1, 26–33 (2002).
[54] R. B. Barat, A. M. Sinyukov, Z. Liu, Y. L. Hor, K. Su, D. E. Gary, Z.-H. Michalopoulou, I. Zorych, J. F. Federici and D. Zimdars, “Rapid-phase modulation of terahertz radiation for high-speed terahertz imaging and spectroscopy,” Opt. Lett. 33, 1593–1595 (2008).
[55] D. Shrekenhamer, S. Rout, A. C. Strikwerda, C. Bingham, R. D. Averitt, S. Sonkusale and W. J. Padilla, “High speed terahertz modulation from metamaterials with embedded high electron mobility transistors,” Opt. Express 19, 9968–9975 (2011).
[56] H. T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt and A. J. Taylor “A metamaterial solid-state terahertz phase modulator,” Nature Photonics 3, 148-151 (2009).
[57] 林柏亨, “偏極獨立兆赫波相位調變器的研製”, 國立中山大學光電工程學系研究所 碩士論文 (2012).
[58] I. H. Libon, S. Baumgärtner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch and P. Dawson, “An optically controllable terahertz filter,” Appl. Phys. Lett. 76, 2821–2823 (2000).
[59] R. Kersting, G. Strasser and K. Unterrainer, “Terahertz phase modulator,” Electron. Lett. 36, 1156–1158 (2000).
[60] K. C. Lim, J. D. Margerum and A. M. Lackner, “Liquid crystal millimeter wave electronic phase shifter,” Appl. Phys. Lett. 62, 1065–1067 (1993).
[61] D. Dolfi, M. Labeyrie, P. Joffre, and J. Huignard, “Liquid crystal microwave phase shifter,” Electron. Lett. 29, 926-928(1993).
[62] A. Yariv, “Optical Electronics in Modern Communications,” Oxford University Press (1997).
[63] D. K. Yang and S. T. Wu, “Fundamentals of Liquid Crystal Devices,” Wiley-SID Series in Display Technology (2006).
[64] 黃雅鈴, “類紙式膽固醇液晶顯示器”, 國立成功大學物理研究所 碩士論文(2005).
[65] H. Y. Wang, “Studies of liquid crystal response time,” University of Central Florida, Doctoral Dissertation (2005).
[66] D. W. Berreman, “Liquid-crystal twist cell dynamics with backflow,” Appl. Phys. 46, 3746 (1975).
[67] C. Z. Van Doorn, “Dynamic behavior of twisted nematic liquid crystal layers in switched fields,” J. Appl. Phys. 46, 3738-3745 (1975).
[68] S. H. Chen and L. Y. Chen, “Flow effect in the chiral-homeotropic liquid-crystal cell,” Appl. Phys. Lett. 75, 3491-3493 (1999).
[69] S. T. Wu and C. S. Wu, “Chiral-homeotropic liquid crystal cells for high contrast and low voltage displays,” J. Appl. Phys. 82, 4795-4799(1997).
[70] T. Yanagimachi, S. Yasuzuka, Y. Yamamura and K. Saito, “Cell Gap Dependence of Nematic Backflow around Annihilating Disclination Pair,” JPSJ 81, 074603 (2012).
[71] D. W. Berreman and W.R. Herrner, “New bistable liquid-crystal twist cell,” J. Appl. Phys. 52,3032-3039 (1981).
[72] C.-S. Yang, C. L. Pan, T.-T. Tang, P.-H. Chen, R. P. Pan and P. Yu, “Voltage-controlled liquid-crystal terahertz phase shifter with indium–tin–oxide nanowhiskers as transparent electrodes,” Opt. Lett. 39, 2511-2513 (2014).
[73] D. Wu, N. Fang, C. Sun, X.C. Zhang, W. Padilla, D. Basov, D. R. Smith and S. Schultz, “Terahertz plasmonic high pass filter,” Appl. Phys. Lett. 83, 201–203 (2003).
[74] R. Mendis, A. Nag, F. Chen and D. Mittleman, “A tunable universal terahertz filter using artificial dielectrics based on parallel-plate waveguides,” Appl. Phys. Lett. 97, 131106 (2010).
[75] H. Nemec, P. Kuzel, L. Duvillaret, A. Pashkin, M. Dressel and M. T. Sebastian, “Highly tunable photonic crystal filter for the terahertz range,” Opt. Lett. 30, 549–551 (2005).
[76] C. Jansen, S. Wietzke, V. Astley, D. Mittleman and M. Koch, “Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies,” Appl. Phys. Lett. 96, 111108 (2010).
[77] H. Němec, P. Kužel, F. Garet, and L. Duvillaret, “Time-domain terahertz study of defect formation in one-dimensional photo- nic crystals,” Appl. Opt. 43, 1965–1970 (2004).
[78] R. Wilk, N. Vieweg, O. Kopschinski and M. Koch, “Liquid crystal based electrically switchable Bragg structure for THz waves,” Opt. Express 17, 7377–7382 (2009).
[79] H. Němec, L. Duvillaret, F. Garet, P. Kužel, P. Xavier, J. Richard, and D. Rauly, “Thermally tunable filter for tera- hertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[80] J. Li, “Terahertz wave narrow bandpass filter based on photonic crystal,” Opt. Commun. 283, 2647–2650 (2010).
[81] J. He, J. Novak, Y. Jiang, Z. Li and R. Huang, “Wavelength switchable terahertz filter based on photonic crystal with liquid-crystal defect layer,” Proc. SPIE 8330, Photonics and Optoelectronics Meetings (2011).
[82] J. He, P. Liu, Y. He and Z. Hong, “Narrow bandpass tunable terahertz filter based on photonic crystal cavity,” Appl. Opt. 51, 776-779 (2012).
[83] E. Hecht, “Optics,” second ed., Addison-Wesley (1987).
[84] http://www.trustech-group.com/product.html
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.221.145.52
論文開放下載的時間是 校外不公開

Your IP address is 18.221.145.52
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code