Responsive image
博碩士論文 etd-0805114-181117 詳細資訊
Title page for etd-0805114-181117
論文名稱
Title
PECVD graphene及Ta2O5薄膜非線性特性之研究
Investigation of nonlinearities of PECVD growth graphene and Ta2O5 film
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
88
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2014-07-22
繳交日期
Date of Submission
2014-09-07
關鍵字
Keywords
非線性折射率、五氧化二鉭、石墨烯、雙光子吸收
Graphene, Ta2O5, Nonlinear refractive index, Two photon absorption
統計
Statistics
本論文已被瀏覽 5749 次,被下載 0
The thesis/dissertation has been browsed 5749 times, has been downloaded 0 times.
中文摘要
自六十年代雷射發現開始,透過材料的非線性特性,大量的應用:如頻率轉換,寬頻光梳等已被利用在日常生活與各式科技所需的系統與元件中。本論文中,我們利用Z掃描(Z-scan)量測出由PECVD成長的石墨烯、及由濺鍍成長的五氧化二鉭薄膜的光學非線性特性。
在第一部分我們量測了由PECVD成長的石墨烯的飽和吸收係數,其調製深度α0為〖4.2×10〗^8 (m^(-1)),飽和強度分別為4.2x108 (m-1)與2.5x107 (Wm-2)。 另外,我們也量測了其在不同能量下的能量相依性及波長760-840nm下的波長相依性。入射光強從0.28-1.5(GWcm-2),其非線性折射率值從5.5×10-8(cm2W-1)到1.07×10-8 (cm2W-1),隨著能量增加,非線性折射率降低;而其非線性折射率隨著波長的增加而降低。由PECVD成長之石墨烯的非線性折射率和其他方法長成之石墨烯相近。利用Open aperture Z-scan對其雙光子吸收係數作量測,從波長750nm到840nm,其雙光子吸收係數從1.32×〖10〗^(-5)(mW-1)降至0.85×〖10〗^(-5)(mW-1)。然而,由PECVD成長的石墨烯,其雙光子吸收係數和其他方法長成之不同層數的石墨烯大了好幾個數量級,這也使得其成為具有潛力的雙光子吸收元件的材料。
在第二部分,我們利用濺鍍成長了五氧化二鉭薄膜,如同n&k量測一般,利用Z掃描的開孔(Open aperture)實驗及閉孔(Close aperture)實驗的穿透率比較發現五氧化二鉭在800nm下吸收現象不顯著;但在非線性折射率方面,我們量測了在不同退火時數下的五氧化二鉭薄膜,針對光學特性最佳之退火3小時的五氧化二鉭薄膜,我們討論了在波長800nm下的能量相依性:入射光強度從0.7-4.8(GWcm-2),其非線性折射率從1.37×10-11(cm2W-1)到0.16×10-11(cm2W-1),其非線性折射率隨著能量上升而降低。從低吸收與高非線性係數,我們討論了它在非線性應用未來的潛力。
Abstract
To optimize the performance, such as frequency conversion, material or devices modulation and so on, nonlinear nature of material has been applied accompanying with the development of laser. As a result, the optical nonlinearity, for example: nonlinear refractivity, saturation flurence.. , are very important. In this thesis, using femtosecond Z-scan technique, the nonlinearities of Plasma-enhanced chemical vapor deposition (PECVD) growth graphene and sputter growth Tantalum pentoxide (Ta2O5) were investigated.
First, the nonlinear absorption coefficient of PECVD growth Graphene was characterized. The modulation depth of 4.2x108 (m-1) and saturation flurence of 2.5x107 (Wm-2) were obtained. Additionally, the two photon absorption (TPA) coefficient b as high as 10-5 (m/W) was observed. The wavelength dependence and possible mechanism of tremendously large TPA coefficient were discussed as well.
Second, the nonlinear properties of Ta2O5, which is a potential material for nonlinear waveguide, were studied by Z-scan. The nonlinear refractive around 10-12 (cm2W-1) was extracted from Z-scan profile. Compared to conventional materials for nonlinear waveguide, Ta2O5 exhibits the feasibility for nonlinear devices. Furthermore, the nature of low loss shows the potential for the ultrabroad band frequency comb and optical computing.
目次 Table of Contents
第一章 緒論........................................................6
第二章 非線性光學量測方法及研究....................................8
2-1非線性光學介紹..................................................8
2-2自相位調變(Self phase modulation)...............................11
2-3簡併四波混頻(Degenerate four wave mixing).......................14
2-4非線性干涉儀(Nonlinear interferometry)..........................16
2-5近三波混頻(Nearly degenerate three-wave mixing).................17
2-6 Z掃描(Z-scan)..................................................19
2-7 總結...........................................................25
第三章 PECVD 成長之石墨烯之非線性光學量測及研究....................26
3-1 石墨烯介紹(Introduction of graphene)............................26
3-2利用Z掃描對PECVD長成之石墨烯之雙光子吸收之研究(PECVD graphene two photon absorption investigation by Z-scan)..........................32
3-2-1 實驗架設及測試.......................................32
3-2-2 光斑(Beam size)大小量測..............................33
3-2-3 脈衝雷射峰值能量計算.................................35
3-2-4 飽和吸收量測結果.....................................36
3-2-5 Open aperture Z掃描(Z-scan)量測PECVD長成之石墨烯的雙光子吸收.....................................................37
3-3 利用Z掃描對PECVD長成之石墨烯之非線性折射率研究...............43
3-3-1 PECVD長成之石墨烯的非線性折射率能量相依性............43
PECVD長成之石墨烯的非線性折射率波長相依性...........47
3-4 結論...........................................................54
第四章 五氧化二鉭(Tantalum pentoxide-〖Ta〗_2 O_5)之非線性光學量測及研究.................................................................55
4-1 五氧化二鉭(Ta_2 O_5)介紹..........................................55
4-2 Ta_2 O_5薄膜製造及其特性..........................................57
4-2-1 Ta_2 O_5薄膜製備........................................57
4-2-2 Ta_2 O_5薄膜特性研究....................................59
4-3 Ta_2 O_5薄膜在不同退火時數下之非線性分析..........................62
4-3-1 系統架設.............................................62
4-3-2 光斑大小量測.........................................62
4-3-3 Z-scan量測結果.......................................63
4-4 Ta_2 O_5薄膜在退火時數3小時下之非線性分析........................67
4-4-1 系統架設.............................................67
4-4-2 退火3小時之Ta_2 O_5薄膜的非線性折射率能量相依性........67
4-5 結論...........................................................72
第五章 結論與未來展望..............................................73
Reference..........................................................75
參考文獻 References
[1] Bell Labs breaks optical transmission record, 100 Petabit per second kilometer barrier, Phys.org, 29 September 2009
[2] K. Kintaka, M. Fujimura, T. Suhara and H. Nishihara, “Third harmonic generation of Nd:YAG laser light in periodically poled LiNbO3 waveguide,” Electronics Letters, 33, 1459 - 1461 (1997)
[3] P.E. Green Jr., “Optical Networking Update,” IEEE Journal of Selected Areas in Communications, 14, 764-779 (1995)
[4] G. Lenz, J. Zimmermann, T. Katsufuji, M. E. Lines, H. Y. Hwang, S. Spalter, R. E. Slusher, and S.-W. Cheong, “Large Kerr effect in bulk Se-based chalcogenide glasses,” Optics Letters, 25, 254–256 (2000)
[5] A. Samoc, M. Samoc, M. Woodruff, and B. Luther-Davies, “Tuning the properties of poly(p-phenylenevinylene) for use in all-optical switching,” Optics, Letters, 20, 1241–1243 (1995).
[6] A. Hayat, A. Nevet, P. Ginzburg, M. Orenstein, "Applications of two-photon processes in semiconductor photonic devices," Semicond. Sci. Technol. 26, 083001 (2011)
[7] S. Vasilyev, M. Mirov, and V. Gapontsev, “Kerr-lens mode-locked femtosecond polycrystalline Cr2+:ZnS and Cr2+:ZnSe lasers,” Optics Express, 22, 5118-5123 (2014)
[8] C. Y. Tai, and J. S. Wilkinson, N. M. B. Pemey, M.C. Netti, and J. J. Baumberg, “Determination of nonlinear refractive index in a Ta2O5 rib waveguide using self-phase modulation,” Optics Express, 12, 5110-5116 (2004)
[9] G. P. Agrawal and N. A. Olsson, “Self-Phase Modulation and Spectral Broadening of Optical Pulses in Semiconductor Laser Amplifiers,” lEEE Journal Of Quantum Electronics, 25, 2997-2306 (1989)
[10] P. N. Kean, K. Smith, and W. Sibbett, “Spectral and temporal investigation of self-phase modulation and stimulated Raman scattering in a single-mode optical fibre,” IEE Proceedings, 134, 163-170 (1987)
[11] S. R. Friberg and P. W. Smith, “Nonlinear optical glasses for ultrafast optical switches,” IEEE J. Quantum Electron. 23, 2089-2094 (1987).
[12] M. J. Weber, D. Milam, and W. L. Smith, “Nonlinear refractive Index of glasses and crystals,” Optical Engineering, 17, 463-469 (1978).
[13] M. J. Moran, C. Y. She, and R. L. Carman, “Interferometric Measurements of the Nonlinear Refractive-Index Coefficient Relative to CS, in Laser-System-Related Materials,” IEEE Journal Of Quantum Electronics, 11, 259-263, (1975)
[14] M. Sheik-Bahae, A. A. Said, and E. W. Van Stryland, “High-sensitivity, single-beam n2 measurements,” Optics Letters, 14, 955-957 (1989)
[15] M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, And E. W. Van Stryland, ”Sensitive Measurement of Optical Nonlinearities Using a Single Beam,” IEEE Journal Of Quantum Electronics, 26, 760-769 (1990)
[16] S. Lu, C. Zhao, Y. Zou, S. Chen, Y. Chen, Y. Li, H. Zhang, S. Wen, and D. Tang,” Third order nonlinear optical property of Bi2Se3,” Optics Express, 21, 2072-2082 (2013)
[17]B. E. A. Saleh, and M. C. Teich, “Fundamental of Photonics Second Edition” WILEY-Interscience (2007)
[18] R. Adair, L. L. Chase, and S. A. Payne, “Nonlinear refractive-index measurements of glasses using three-wave frequency mixing,” Journal of The Optical Society of America B, 4, 875-881 (1987)
[19] H. Zhang, S. Virally, Q. Bao, L. K. Ping, S. Massar, N. Godbout, and P. Kockaert, “Z-scan measurement of the nonlinear refractive index of grapheme,” Opt. Lett., 37, 1856-1858 (2012)
[20] A. K. Geim and K. S. Novoselov, “The rise of grapheme,” Nature Materials, 6, 183-191 (2007).
[21] Nair, R. R. et al, “Fine Structure Constant Defines Visual Transparency of Graphene,” Science, 320, 1308-1308.(2008)
[22] E. Fradkin, “Critical behavior of disordered degenerate semiconductors,” Physical Review B, 33, 3263–3268 (1986).
[23] K. S. Novoselov, A. K. Geimctric, S. V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V.Grigorieva, A.A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306, 666-669 (2004).
[24] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov, and A. K. Geim “Two-dimensional atomic crystals”. Proc. Natl Acad. Sci. USA, 102, 10451-10453 (2005).
[25] T. A. Land, T. Michely, R. J. Behm, J. C. Hemminger, and G. Comsa, “STM investigation of single layer graphite structures produced on Pt(111) by hydrocarbon decomposition,” Surface Science, 264, 261-270 (1992).
[26] A. Nagashima, K. Nuka, H. Itoh, T. Ichinokawa, C. Oshima, Electronic states of monolayer graphite formed on TiC(111) surface, Surface Science, 291, 93-98 (1993).
[27] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov and A. K. Geim, “The electronic properties of grapheme,” Reviews of Modern Physics, 81, 109–162 (2009)
[28] S. V. Morozov, K. S. Novoselov, F. Schedin, D. Jiang, A. A. Firsov, and A. K. Geim. “Two-dimensional electron and hole gases at the surface of graphite,” Physical Review B, 72, 201401-201404 (2005)
[29] B. Partoens, and F. M. Peeters, “From graphene to graphite: Electronic structure around the K point,” Physical Review B, 74, 075404 (2006).
[30] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman Spectrum of Graphene and Graphene Layers,” Physical Review Letters, 97, 187401 (2006)
[31] F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Materials today, 15, 564-589 (2012)
[32] H. Shioyama, “Cleavage of graphite to grapheme,” Journal of Material Science Letters, 20, 499-500 (2001).
[33] L. M. Viculis, J. J. Mack, and R. B. Kaner, “A chemical route to carbon nanoscrolls,” Science, 299, 1361 (2003).
[34] Z. Zheng, C. Zhao, S. Lu, Y. Chen, Y. Li, H. Zhang, and S. Wen, “Microwave and optical saturable absorption in Graphene,” Optics Express, 20, 23201-23214 (2012).
[35] F. Xia, T. Mueller, Y. M. Lin, A. Valdes-Garcia, and P. Avouris, “Ultrafast graphene photodetector,” Nature Nanotechnology, 4, 839–843 (2009).
[36] M. Liu, X. Yin, E. Ulin-Avila, B. Geng, T. Zentgraf, L. Ju, F. Wang, and X. Zhang, “A graphene-based broadband optical modulator,” Nature 474, 64–67 (2011).
[37] Q. Bao, H. Zhang, B. Wang, Z. Ni, C. H. Y. X. Lim, Y. Wang, D. Y. Tang, and K. P. Loh, “Broadband graphene polarizer,” Nature Photonics, 5, 411–415 (2011).
[38] W. D. Tan, C. Y. Su, R. J. Knize, G. Q. Xie, L. J. Li, and D. Y. Tang, “Mode locking of ceramic Nd:yttrium aluminum garnet with graphene as a saturable absorber,” Applied Physics Letters, 96, 031106 (2010).
[39] L. M. Zhao, D. Y. Tang, H. Zhang, X. Wu, Q. Bao, and K. P. Loh, “Dissipative soliton operation of an ytterbium-doped fiber laser mode locked with atomic multilayer grapheme,” Optics Letters, 35, 3622–3624(2010).
[40] W. B. Cho, J. W. Kim, H. W. Lee, S. Bae, B. H. Hong, S. Y. Choi, I. H. Baek, K. Kim, D.-I. Yeom, and F. Rotermund, “High-quality, large-area monolayer graphene for efficient bulk laser mode-locking near 1.25 μm,” Opt. Lett., 36, 4089–4091 (2011).
[41] H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, “Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser,” Applied Physics Letters. 96, 111112 (2010).
[42] D. Diso, M. R. Perrone, M. L. Protopapa, “Beam width measurement of asymmetric multi-mode laser beams,” Optics and Laser technology, 31, 411-418 (1999)
[43] A. Hayat, A. Nevet, P. Ginzburg, and M. Orenstein, "Applications of two-photon processes in semiconductor photonic devices," Semicond. Science Technology, 26, 083001 (2011).
[44] Y. Fan, Z. Jiang, and L. Yao, “Two-photon absorption of monolayer graphene suspensions in femtosecond regime,” Chinese Optics Letters, 10, 071901 (2012)
[45] H. Yang, X. Feng, Q. Wang, H. Huang, W. Chen, A. T. S. Wee, and W. Ji, “Giant Two-Photon Absorption in Bilayer Graphene,” Nano Letters, 11, 2622–2627 (2011)
[46]S. Kumar, M. Anija, N. Kamaraju, K. S. Vasu, K. S. Subrahmanyam, “Femtosecond carrier dynamics and saturable absorption in graphene suspensions,” Applied Physics Letters 95, 191911 (2009)
[47] E. W. V. Stryland, M. A. Woodall, H. Vanherzeele, and M. J. Soileau, “Energy band-gap dependence of two-photon absorption,” Opt. Lett., 10, 490-492 (1985)
[48] A. Major, F. Yoshino, I. Nikolakakos, J. S. Aitchison, and P. W. E. Smith, Dispersion of the nonlinear refractive index in sapphire,” Optics Letters, 29, 602-604 (2004)
[49] M. Sheik-Bahae, D. C. Hutchings, D. J. Hagan, and E. W. Van Stryland, “Dispersion of bound electronic nonlinear refraction in solids,” IEEE Journal Of Quantum Electronics, 27, 1296-1309 (1991)
[50] G. M. Wolten, and A. B. Chase, "Single-crystal data for β Ta2O5 and A KPO3", Zeitschrift für Kristallographie 129, 365–368 (1969).
[51] Zibrov, I. P.; Filonenko, V. P.; Sundberg, M.; Werner, P.-E, "Structures and phase transitions of B-Ta2O5 and Z-Ta2O5: two high-pressure forms of Ta2O5", Acta Crystallographica Section B Structural Science, 56, 659–665 (2000)
[52] T. J. Bright, “Infrared optical properties of amorphous and nanocrystalline Ta2O5 thin films,” Journal Of Applied Physics, 114, 083515 (2013)
[53] K. Kaupo, A. Jaan, A. Aleks, K. Oksana, U. Teet, S. Väino, "Properties of tantalum oxide thin films grown by atomic layer deposition," Thin Solid Films, 260 , 135–142 (1995)
[54] R. M. Fleming, D. V. Lang, C. D. W. Jones, M. L. Steigerwald, D. W. Murphy, G. B. Alers, Y.-H. Wong,; R. B. van Dover, J. R. Kwo, A. M. Sergent, "Defect dominated charge transport in amorphous Ta2O5 thin films," Journal of Applied Physics, 88 (2), 850 (2000)
[55] P. A. Murawala, S. Mikio, T. Toshiaki, T. Osamu, F. Shizuo, and F. Shigeo, "Structural and Electrical Properties of Ta2O5 Grown by the Plasma-Enhanced Liquid Source CVD Using Penta Ethoxy Tantalum Source," Japanese Journal of Applied Physics, 32, 368–375 (1993)
[56] E. Franke, C. L. Trimble, M. J. DeVries, J. A. Woollam, M. Schubert, and F. Frost, “Dielectric function of amorphous tantalum oxide from the far infrared to the deep ultraviolet spectral region measured by spectroscopic ellipsometry,” Journal Of Applied Physics, 88, 5166-5174 (2000).
[57] D. F. Lu, “An interferometric biosensor composed of a prism-chamber assembly and a composite waveguide with a Ta2O5 nanometric layer,” Sensors and Actuators B, 157, 575-580 (2011).
[58] B. S. Ahluwalia, A. Z. Subramanian, O. G. Hellesø, N. M. B. Perney, N. P. Sessions, and J. S. Wilkinson, “Fabrication of Submicrometer High Refractive Index Tantalum Pentoxide Waveguides for Optical Propulsion of Microparticles,” IEEE Photonics Technology Letters, 21, 1408 - 1410 (2009).
[59] J. Q. Zhang, “Characteristics of ZnO thin film transistor using Ta2O5 gate dielectrics,” Thin Solid Films, 544, 281-284 (2013).
[60] S.-D. Cho and K.-W. Paik, “Study on the amorphous Ta2O5 thin film capacitors deposited by dc magnetron reactive sputtering for multichip module applications,” Material Science and Engineering B, 67, 108 (1999).
[61] C. Chaneliere, J. L. Autran, R. A. B. Devine, and B..Balland, ”Tantalum pentoxide (Ta2O5) thin films for advanced dielectric applications,” Material Science and Engineering R, 22, 269–322 (1998).
[62] F. Rubio, J. Denis, J. M. Albella, and J. M. Martinez-Duart, “Sputtered Ta2O5 antireflection coatings for silicon solar cells,” Thin Solid Films, 90, 405 (1982).
[63] A. J. Waldorf, J. A. Dobrowolski, B. T. Sullivan, and L. M. Plante, “Optical coatings deposited by reactive ion plating,” Applied Optics, 32, 5583-5593 (1993).
[64] K. Toki, K. Kusakabe, T. Odani, S. Kobuna, and Y. Shimizu, “Tantalum oxide films on silicon grown by tantalum evaporation in atomic oxygen,” Thin Solid Films, 401, 281–282 (1996).
[65] E. B. Franke, C. L. Trimble, M. Schubert, J. A. Woollam, and J. S. Hale, “All-solid-state electrochromic reflectance device for emittance modulation in the far infrared spectral region,” Applied Physics Letters, 77, 930-932 (2000).
[66] J. Gonzalez, M. C. Ruiz, J. B. Rivarola, and D. Pasquevich, “Effects of heating in air and chlorine atmosphere on the crystalline structure of pure Ta2O5 or mixed with carbon,” Journal of Material Science, 33, 4173-4180 (1998)
[67] B. S. Ahluwaliaa, O. G. Hellesøa, A. Z. Subramanianb , N. M. B. Perneyb, N. P. Sessionsb and J. S. Wilkinsonb, “Fabrication and optimization of tantalum pentoxide waveguides for optical micro-propulsion,” SPIE Proceedings, 7604 (2010).
[68] W. Freude L. Alloatti, A. Melikyan, R. Palmer, D. Korn, N. Lindenmann, T. Vallaitis, D. Hillerkuss, J. Li, A. Barklund, R. Dinu, J. Wieland, M. Fournier, J. Fedeli, S. Walheim, P. M. Leufke, S. Ulrich, J. Ye, P. Vincze, H. Hahn, H. Yu, W. Bogaerts, P. Dumont, R. Baets, B. Breiten, F. Diederich, M. T. Beels, I. Biaggio Th. Schimmel, C. Koos, J. Leuthold, “Nonlinear Optics on the Silicon Platform,”, OFC/NFOEC Technical Digest (2012).
[69] Jonas Hansryd, Peter A. Andrekson, Member, I Mathias Westlund, Jie Li, and Per-Olof Hedekvist, “Fiber-Based Optical Parametric Amplifiers and Their Applications,” IEEE Journal Of Selected Topics In Quantum Electronics, 8, 506-520 (2002).
[70] L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner , “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Optics Express, 19, 12 ,(2011)
[71] E. Y. M. Teraoka, D. H. Broaddus, T. Kita, A. Tsukazaki, M. Kawasaki, A. L. Gaeta, and H. Yamada, “Self-phase modulation at visible wavelengths in nonlinear ZnO channel waveguides,” Applied Physics Letters, 97, 071105 (2010).
[72] M. Dinu, F. Quochi, and H. Garcia, "Third-order nonlinearities in silicon at telecom waveguides," Appl. Phys. Lett. 82, 2954-2956 (2003)
[73] B. P. Nelson, K. J. Blow, P. D. Constantine, N. J. Doran, J. K. Lucek, I. W. Marshall, and K. Smith, “Alloptical Gbit/s switching using nonlinear optical loop mirror,” Electron. Lett. 27, 704-705 (1991)
[74] K. Ikeda, R. E. Saperstein, N. Alic, and Y. Fainman, “Thermal and Kerr nonlinear properties of plasma-deposited silicon nitride/ silicon dioxide waveguides,” Opt. Exp. 16, 12987–12994 (2008).
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.28.48
論文開放下載的時間是 校外不公開

Your IP address is 3.17.28.48
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code