Responsive image
博碩士論文 etd-0805116-140206 詳細資訊
Title page for etd-0805116-140206
論文名稱
Title
製備CuInSe2磊晶薄膜並應用於超薄矽晶太陽電池
Preparation of CuInSe2 epitaxial films for ultrathin Si solar cell
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
67
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-29
繳交日期
Date of Submission
2016-09-05
關鍵字
Keywords
n-Si/p-Si/p-CIS、p-CuGaSe2/n-Si/n-CuInSe2、N型CIS、PC1D模擬、超薄矽晶太陽電池
p-CuGaSe2/n-Si/n-CuInSe2, PC1D simulation, extrinsic doping of Zn, ultra-thin Si wafers, n-Si/p-Si/p-CIS
統計
Statistics
本論文已被瀏覽 5651 次,被下載 38
The thesis/dissertation has been browsed 5651 times, has been downloaded 38 times.
中文摘要
單晶矽太陽電池所使用的矽晶片傾向於越來越薄(<200μm),但結晶矽具間接能隙造成光吸收係數偏低,因此需要借助鈍化層(passivation)、光捕捉(light trapping)等技術以達成高效率太陽電池之元件設計,然而隨著矽晶片厚度減薄至幾十微米的程度,既有的光捕捉技術將難以施展。本實驗室多年研究Cu-III-VI族半導體材料性質並有效改善薄膜磊晶技術,期藉由具直接能隙之CuGaSe2和CuInSe2薄膜搭配超薄矽晶片(10~50μm),前者與矽形成異質接面而後者以其優越的光吸收特性解決矽晶片薄化的問題,此一新穎的太陽電池元件結構為p-CuGaSe2/n-Si/n-CuInSe2。由於異質材料界面缺陷與N型CuInSe2高電阻率等問題,目前以矽晶同質接面搭配CuInSe2(即n-Si/p-Si/p-CuInSe2)進行初步研究,一則探討CuInSe2/Si磊晶問題,再則進行元件模擬以了解材料性質的影響程度。
在這項研究中,我們利用共蒸鍍系統製備CuInSe2薄膜,在(100)單晶矽晶片上嘗試磊晶,初步結果由XRD判斷形成富銦之Cu2In4Se7相,由歐傑能譜縱深分析判斷該薄膜中各元素比例組成偏離定比值頗大,需要做製程上的調整。另一方面以鋅摻雜未能成功形成低電阻之N型CuInSe2。在模擬軟體PC1D計算方面,10微米矽晶同質接面搭配最佳化摻雜濃度之CIS可由19.5%提升到28%之高效率。
Abstract
As the Si wafer tends to decrease in thickness for current developments of crystalline Si solar cells, light trapping becomes a crucial technology to enhance optical absorption in crystalline Si to achieve high energy conversion efficiency. We propose the use of CuInSe2 (CIS), an effective optical absorbed layer due to its direct bandgap of 1.03 eV, to grow epitaxially on the back of single-crystalline Si wafer and eliminate the light trapping design needed for conversional Si solar cells. This technique is even more powerful for its application on ultra-thin Si wafers (10~50 μm). In this work, we grew CIS epitaxial films on (100)Si wafers by three-source evaporation. XRD analysis indicated that the film grown epitaxially on Si, but the crystalline phase was identified to be Cu2In4Se7, a defect-ordered chalcopyrite compound. Auger depth profiling showed that the Cu:In ratios are 1:2 in the film and 1:3 at the surface for the film grown at 500oC and annealed in Se overpressure at 400oC for 30 minutes. Also, the Se content was significant lower than the expected value in the film but increased slightly near to the surface. The discrepancy of the film composition far from the stoichiometry of a chalcopyrite phase, i.e. Cu:In:Se=1:1:2, was attributed to the different evaporation rate of Cu2Se and In2Se3, which were formed prior to react to be a CIS compound. In addition, the Auger data revealed an amount of 5~10 at% Si in the film, which might be caused by the interdiffusion between the film and the substrate. Therefore, a low-temperature growth process, such as photo-assisted molecular beam epitaxy, should be employed for the CIS growth. On the other hand, extrinsic doping of Zn in CIS was investigated but not got a successful result. This suggests that an alternate candidate of group II element with less electronegativity, such as Cd, may be used to replace Zn as an effective n-type dopant. Finally, a PC1D simulation tool was applied to predict and optimize the device properties of a Si homojunction capped with a CIS bottom layer, i.e. n-Si/p-Si/p-CIS. We found that an increase in cell efficiency up to 28% for an ultra-thin (10 m) Si solar cell could be realized through the addition of a CIS layer with an optimized doping concentration.
目次 Table of Contents
摘要 ii
Abstract iii
圖目錄 vi
表目錄 viii
一、 導論 1
1-1 前言 1
1-2 矽晶太陽電池 5
1-3 CuInSe2材料基本性質 9
1-4 SiCIS元件設計 12
1-5 研究動機與目的 16
二、 實驗及分析方法 18
2-1 實驗規劃及實驗流程 18
2-1-1 元件模擬方法 19
2-1-2 元件各層膜製備與製程儀器簡介 23
2-2 分析儀器 28
2-2-1 X光繞射儀 28
2-2-2 拉曼光譜儀 28
2-2-3 四點探針 29
2-2-4 穿透光譜儀 30
2-2-5 場發式掃描電子顯微鏡 31
2-2-6 電流-電壓特性曲線量測(I-V measurement) 31
2-2-7 歐傑電子能譜儀(auger electron spectroscopy ,AES) 31
三、 實驗結果與討論 33
3-1 製備CuInSe2定比組成 33
3-2 CIS共蒸鍍於矽晶基板 40
3-3 元件模擬結果 45
3-4 N型矽之上電極金屬選擇 49
3-5 CIS摻雜Zn 51
四、 結論 53
五、 參考文獻 54
參考文獻 References
[1] I. Fraunhofer Institute for Solar Energy Systems, PHOTOVOLTAICS REPORT, Fraunhofer Institute for Solar Energy Systems, ISE, 2016.
[2] Hitoshi Sai, Takuya Matsui, Takashi Koida, Koji Matsubara, Michio Kondo, Shuichiro Sugiyama, Hirotaka, “Triple-junction thin-film silicon solar cell fabricated on periodically textured substrate with a stabilized efficiency of 13.6%,” Appl. Phys. Lett., pp. 106, 213902 , 2015.
[3] I. First Solar, First Solar Achieves Yet Another Cell Conversion Efficiency World Record, First Solar, Inc., 2016.
[4] S. Frontier, Solar Frontier Achieves World Record Thin-Film Solar Cell Efficiency: 22.3%, Tokyo : Solar Frontier , 2015.
[5] Shaoqing Xiaoab and Shuyan Xub, “High-Efficiency Silicon Solar Cells—Materials and Devices Physics,” Critical Reviews in Solid State and Materials Sciences , pp. 277-317, 2014.
[6] Keiichiro Masuko, Masato Shigematsu, Taiki Hashiguchi, Daisuke Fujishima, Motohide Kai, Naoki Yoshimura, Tsutomu Yamaguchi, Yoshinari Ichihashi, Takahiro Mishima, Naoteru Matsubara, Tsutomu Yamanishi, Tsuyoshi Takahama, Mikio Taguchi, and Eiji Maruyama, “Achievement of More Than 25% ConversionEfficiency With Crystalline SiliconHeterojunction Solar Cell,” IEEE, 2014.
[7] M. I. Alonso,K. Wakita,J. Pascual,M. Garriga,and N. Yamamoto, “Optical functions and electronic structure of CuInSe2,CuGaSe2,CuInS2,CuGaS2,” Phys. Rev. B, 4 12 2001.
[8] B. J. Stanbery, Copper Indium Selenides and Related Materials for Photovoltaic Device, Critical Reviews in Solid State and Materials Sciences , 2010.
[9] F. Abou-Elfotouh, D.J. Dunlavy, T.J. Coutts, Solar Cells ,Intrinsic defect states in CuInSe2 single crystals, Elsevier B.V. , 1989.
[10] Bae-Heng Tseng,Song-Bin Lin,Gin-Lern Gu,and Wei Chen, “Elimination of orientation domains and antiphase domains in the epitaxial films with chalcopyrite structure,” APPLED PHYSICS, p. 1391, 1996.
[11] B. SCHUMANN, A. TEMPEL and G. KIJHN , “EPITAXIAL LAYERS OF CuInSe2,” Solar Cells, p. 43, 1986.
[12] Jef Poortmans and Vladimir Arkhipov, Thin film solar cells Fabricaition,Characterization and Application, John Wiley & Sons Ltd, 2006.
[13] Chun-Sheng Jiang, F. S. Hasoon, H. R. Moutinho, H. A. Al-Thani, M. J. Romero, and M. M. Al-Jassim, “Direct evidence of a buried homojunction in Cu ( In,Ga ) Se 2 solar cells,” applied physucs letters, 2003.
[14] Christiana Honsberg and Stuart Bowden, “welcome to PVCDROM|PVEducation,” the National Science Foundation under Grant Numbers 0935247 and 1041895, [線上]. Available: http://www.pveducation.org/.
[15] S.S.Fouad and S.B Youssef, “The optical properties of CuInSe2 thin films,” ACTA PHYSICA POLONICA A, p. Vol.82(495), 1992.
[16] S. R. Kodigala, Thin films and nanostructures Cu(In1-xGax)Se Based Thin Film Solar Cells, Academic Press, 2011.
[17] 陳芸夆, “I-III-VI2薄膜太陽電池之研製,” 國立中山大學材料與光電科學學系碩士論文, 2013.
[18] Antonio lugue, Steven Hegedus, handbook of photovoltaic science and engineering, chichester: John Wiley & Sons Ltd, 2003.
[19] N. S. Lewis, Basic Research Needs for Solar Energy Utilization, Washington, DC: Office of Basic Energy Science, 2005.
[20] D. o. P. a. A. The University of Toledo, “Fundamental Properties of Solar Cells, Principles and Varieties of Solar Energy,” 10 1 2012. [線上]. Available: http://astro1.panet.utoledo.edu/~relling2/teach/archives/6980.4400.2012/20120110_PHYS_6980_4400.pdf.
[21] Parul Chawla, Son Singh and Shailesh Narain Sharma, “An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals,” Beilstein J. Nanotechnol. , pp. 1235-1244, 8 8 2014.
[22] Adrian Chirilă,Patrick Reinhard,Fabian Pianezzi,Patrick Bloesch,Alexander R. Uhl,Carolin Fella,Lukas Kranz,Debora Keller,Christina Gretener,Harald Hagendorfer,Dominik Jaeger,Rolf Erni,Shiro Nishiwaki,Stephan Buecheler& Ayodhya N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nature Materials, pp. 1107-1111, 3 11 2013.
[23] C. R. A. CATLOW, Z. X. GUO,M.MISKUFOVA,S.A.SHEVLIN,A. G. H. SMITH,A.A.SOKOL,A.WALSH,D.J.WILSON AND S. M. WOODLEY, “Advances in computational studies of energy materials,” Phil. Trans. R. Soc. A, pp. 3379-3456, 21 6 2010.
[24] M. Parans Paranthaman, Winnie Wong-Ng, Raghu N. Bhattacharya , Semiconductor Materials for Solar Photovoltaic Cells, Switzerland: Springer International Publishing, 2016.
[25] 李御台, “以快速硒化法製備高品質Cu2ZnSnSe4薄膜並應用於太陽電池元件,” 國立中山大學材料與光電科學系碩士論文, 2015.
[26] 李貞儀, “Cu2ZnSnSe4薄膜之硒化製程研究,” 國立中山大學材料與光電科學學系碩士論文, 2012.
[27] 葉智為, “以快速硒化法製備Cu2ZnSnSe4薄膜並用於太陽電池之製作,” 國立中山大學材料與光電科學學系碩士論文, 2014.
[28] 徐瑋志, “以硒化法製作CI(G)S薄膜太陽電池,” 國立中山大學材料與光電科學碩士論文, 1 7 2011.
[29] 高千惠, “Cu2ZnSnSe4薄膜之快速硒化製程研究,” 國立中山大學材料科學研究所碩士論文, 2012.
[30] S.W. Glunz, R. Preu, D. Biro, “Crystalline Silicon Solar Cells: State-of-the-Art and Future Developments,” Elsevier Ltd, 25 11 2014.
[31] S.W. Glunz, R. Preu, D. Biro, Comprehensive Renewable Energy chapter1.16 Crystalline Silicon Solar Cells – State-of-the-Art and Future Developments, Elsevier, 2012.
[32] 黃惠良;蕭錫鍊;周明奇;林堅楊;江雨龍;曾百亨;李威儀;李世昌;林唯芳, 太陽電池SOLAR CELLS, 五南圖書出版有限公司, 2009.
[33] Yiming Liu,Yun Sun,Wei Liu and Jianghong Yao, “Novel high-efficiency crystalline-silicon-based compound heterojunction solar cells:HCT(heterojunction with compound thin-layer),” Physical Chemistry Chemical Physics, 7 5 2014.
[34] 吳昭慧, “以光輔助成長CuInSe2磊晶薄膜之光激光特性及組成分析,” 6 1998.
[35] Kuo-Jui Hsiao, Jing-Da Liu, Hsing-Hua Hsieh and Ting-Shiuan Jiang, “Electrical impact of MoSe2oSe2 on CIGS thin-film solar cells,” Phys. Chem. Chem. Phys, 2015.
[36] 楊登峻, “組成變化與成長條件對CuInSe2磊晶薄膜光電特性的影響,” 1997.
[37] K.G. Deepa, K.P. Vijayakumar, C. Sudhakartha, “Lattice vibrations of sequentially evaporated CuInSe2 by Raman microspectometry,” Materials Science in Semiconductor Processing, 2012.
[38] 李適維, “加入雜質Zn對CuInSe2磊晶薄膜光電特性的影響與CuInSe2 p-n接面之製程與特性研究”.
[39] I. Shih, C.H. Champness, A. Vahid Shahidi, “Growth by directional freezing of CuInSe2 and diffused homojunctions in bulk material,” Solar cells, pp. 27-41, 1996.
[40] Bhushan Sopori,Prakash Basnyat,Sudhakar Shet,Vishal Mehta,Jeff Binns and Jesse Appel, “Understanding Light-Induced Degradation of cells,” 於 IEEE Photovoltaic Specialists Conference, , 2012.
[41] 徐懷仁, “磊晶成長 Cu(In,Ga)Sez/ZnSe 異質接面結構,” 1994.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code