Responsive image
博碩士論文 etd-0805116-145037 詳細資訊
Title page for etd-0805116-145037
論文名稱
Title
基於純量耦模方程式之單模多核光纖模場分析
Mode Field Analysis of Single-mode Multi-core Optical Fibers based on Scalar Coupled Mode Theory
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
84
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-26
繳交日期
Date of Submission
2016-09-05
關鍵字
Keywords
耦合係數、信號串擾、單模多核光纖、耦合長度、純量耦模理論
coupling length, single-mode multi-core fiber, coupled-mode theory, signal crosstalk, coupling coefficients
統計
Statistics
本論文已被瀏覽 5692 次,被下載 1016
The thesis/dissertation has been browsed 5692 times, has been downloaded 1016 times.
中文摘要
目前光纖主要的研究方向是朝單模多核或多模少數多核的光纖方向發展。根據已搜尋到的文獻,已經初步完成多核光纖模擬與實驗,其結果顯示此種方式相當程度地提升通訊上的傳輸容量。
然而對於單模多核光纖,它的被覆層越做越小,使得核之間的距離也越小,耦合變強,相鄰的兩個核會導致信號串擾。有趣的是,核與核之間耦合係數理論值與實際測量出的結果不同,理論值比實驗值至少大了2個數量級。我們合理的推測,耦合強度的衰減是由於相鄰的核之間的相對相位的隨機擾動,一部分是由於光纖中模態之間極化的變化。
本論文所要分析的是具有多核結構光纖的模態特性,由於這個問題的結構太大,沒辦法使用傳統來解模態解的商業軟體,像是有限元素法或光束傳播法,去分析多核光纖 (multi-core fiber, MCF)。而本論文考慮小對比折射率的多核光纖,提出了更嚴謹的純量耦模理論 (Coupled mode theory, CMT)去分析給定的單模多核光纖,以利多核光纖的設計。分析的分法是整個結構的模態場可以表示為,各個獨立核的線性極化場的線性組合。最後將耦模理論推導的公式利用MATLAB寫出多核光纖的程式,它不僅計算了整個多核光纖結構的每個特徵模態,也可以研究單模多核光纖在不同的耦合長度,其中的一個核對其他核的耦合影響。
而將這些單模多核光纖的成果與新的頻寬多核光纖光放大器結合,並解決放大器的問題,將可以提高光纖通訊系統的容量。
Abstract
The recent trend in optical fiber communication is moving toward developing the multi-core fiber (MCF) with each fiber core supporting either a single mode or multi modes. It will effectively increase the bandwidth of the communications system.
However, for the single-mode MCF as we reduce the cladding spacing between each core the coupling among each core increases. This will result in undesirable signal crosstalk coming from adjacent fiber cores. It is interesting to note that present theoretical prediction of the coupling strength of a single-mode MCF is a few orders of magnitude larger than experimentally measured values. We can only speculate that the coupling strength is reduced partly due to random fluctuation of relative phases among neighboring cores and partly due to polarization variation among fiber bores.
Since the cross sectional area of a MCF is of several hundred/thousand wavelength square, it is impossible to conduct mode field analysis of these MCFs using commercial software using traditional mode-solving techniques such as the finite-element method or beam propagation method. In this paper, considering the small index contrast in the MCF we propose to develop a rigorous scalar coupled-mode theory (CMT) to analyze mode fields of a given single-mode MCF. The global MCF mode fields are then represented by some linear combination of linear polarized fiber mode field attributed to each single individual fiber core. In the end we have implemented Matlab codes for the MCF under CMT formulation. This program not only computes every eigen-mode of the global MCF waveguide structure it also allows us to study the mode field evolution of the single-mode MCF. As we initially turn on one of the fiber core we are able to observe that the energy gradually spread across all fiber cores according to the governing equation.
When combined with new broadband MCF optical amplifiers we may see another ten-fold increase in the capacity of the optical fiber communication system with a minimum increase in cost.
目次 Table of Contents
論文審定書 i
誌謝 ii
中文摘要 iii
英文摘要 iv
目錄 v
圖次 vii
表次 ix
第一章 緒論 1
1.1 研究動機 1
1.2 簡介 2
第二章 光纖耦合基本觀念 3
2.1 光纖介紹 3
2.2 光纖的LP模態近似解 5
2.3 耦模理論 (Coupled Mode Theory, CMT)觀念 14
第三章 純量耦模理論推導 23
3.1 耦模理論 23
3.2 模態場演化與耦合長度 29
第四章 耦模理論計算模擬結果 32
4.1 雙核單模光纖 32
4.2 三核單模光纖 39
4.3 七核單模光纖 45
4.4 十九核單模光纖 55
第五章 總結 67
5.1 結果與討論 67
5.2 未來工作 69
參考文獻 71
參考文獻 References
[1] Y. Kokubun and M. Koshiba, Novel multi-core fibers for mode division multiplexing: proposal and design principle, IEICE Electronics Express, Vol. 6, No. 8, 522-528, 2009.
[2] B. Zhu, T. F. Taunay, M. F. Yan, J. M. Fini, M. Fishteyn, E. M. Monberg and F. V.Dimarcello, Seven-core multicore fiber transmissions for passive optical network, OSA 2010.
[3] M. Koshiba, K. Saitoh, K. Takenaga, and S. Matsuo, Multi-core fiber design and analysis: coupled-mode theory and coupled-power theory, Optical Society of America, 2011.
[4] K. Imamura, Y. Tsuchida, K. Mukasa, R. Sugizaki, K. Saitoh and M. Koshiba, Investigation on multi-core fibers with large Aeff and low micro bending loss, Optical Society of America, 2011.
[5] K. Imamura, K. Mukasa and R. Sugizaki, Trench Assisted Multi-Core Fiber with Large Aeff over 100 and Low Attenuation Loss, ECOC Technical Digest, OSA 2011.
[6] K. Takenaga, Y. Arakawa, S. Tanigawa, N. Guan, S. Matsuo, K. Saitoh and M. Koshiba, Reduction of Crosstalk by Trench-Assisted Multi-Core Fiber, OSA/OFC/NFOEC 2011.
[7] M. Koshiba, K. Saitoh, K. Takenaga and S. Matsuo, Analytical Expression of Average Power-Coupling Coeffi cients for Estimating Intercore Crosstalk in Multicore Fibers,IEEE Photonics Journal, Vol. 4, No. 5, October 2012.
[8] J. Sakaguchi, B. J. Puttnam, W. Klaus, Y. Awaji, N. Wada, A. Kanno, T. Kawanishi, K. Imamura, H. Inaba, K. Mukasa, R. Sugizaki, T. Kobayashi and M. Watanabe, 19-core fiber transmission of 19x100x172-Gb/s SDM-WDM-PDM-QPSK signals at 305Tb/s, OFC/NFOEC Postdeadline Papers, OSA, 2012.
[9] K. Takeshima, T. Tsuritani and etc., 51.1-Tbit/s MCF Transmission over 2520 km Using Cladding Pumped 7-core EDFAs, OFC 2015.
[10] Ming-Jun Li, Shenping Li and Robert A. Modavis, Coupled Mode Analysis of Crosstalk in Multicore Fiber with Random Perturbations, OFC 2015.
[11] K. Igarashi, D. Souma and etc.,114 Space-Division-Multiplexed Transmission over 9.8-km Weakly-Coupled-6-Mode Uncoupled-19-Core Fibers, OFC 2015.
[12] M. Mrejen, H. Suchowski, Taiki Hatakeyama, C. Wu, L. Feng, K. O’Brien,Y. Wang, & Xiang Zhang, Adiabatic elimination-based coupling control in densely packed subwavelength waveguides, NATURE COMMUNICATIONS, DOI: 10.1038/ncomms8565, Jun 2015.
[13] B. E. Little and W. P. Huang, " Coupled-Mode Theory for Optical Waveguides", Progress In Electromagnetics Research, PIER 10, 217-270, 1995.
[14] Akira Ishimaru, "Electromagnetic Wave Propagation, Radiation, and Scattering", Prentice Hall, Englewood Cliffs, New Jersey, 1991.
[15] B. E. A. Saleh, M. C. Teich, John Wiley, & Sons, "Fundamentals of Photonics", pp. 238-271, 1991.
[16] A. Yariv, "Quantum Electronics (Quantum Electronics) ", 3rd Ed (third edition), pp. 600-649, 1998.
[17] D.Marcuse, " American Telephone and Telegraph Company" , The Bell System Technical Journal, Vol. 51, No. 1, Printed in U.S.A. , pp. 229-237, January 1972.
[18] A. Yariv, " Coupled-Mode Theory for Guided-Wave Optics" , IEEE Journal of Quantum Electronics, Vol. QE-9, No. 9, pp. 919-933, September 1973.
[19] A. Hardy and W. Streifer, " Coupled Mode Theory of Parallel Waveguides" , IEEE Journal of Lightwave Technology, Vol. LT-3, No. 5, October 1985.
[20] Wei-Ping Huang, Coupled-mode theory for optical waveguides: an overview, Vol. 11, No. 3, March 1994,J. Opt. Soc. Am. A., 1994.
[21] R. Conde, C. Depeursinge, B. Gisin, N. Gisin and B. Groebli, Refractive index profile and geometry measurements in multicore fibres, Pure Appl., Opt. 5 269–274., Printed in the UK, 1996.
[22] John M. Fini, Benyuan Zhu, Thierry F. Taunay and Man F. Yan, Statistics of crosstalk in bent multicore fibers, OSA, Vol. 18, No. 14, 5 July 2010.
[23] Keang-Po Ho, Joseph M. Kahn, Statistics of Group Delays in Multimode Fiber with Strong Mode Coupling, Journal of Lightwave Technology, vol. 29, pp. 3119-3128, 2011.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code