Responsive image
博碩士論文 etd-0805116-161043 詳細資訊
Title page for etd-0805116-161043
論文名稱
Title
新型高效率超薄矽基異質接面太陽電池的元件結構設計模擬及製作
High efficiency ultra-thin Si heterojunction solar cells: Device design and fabrication
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
59
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2016-07-29
繳交日期
Date of Submission
2016-10-17
關鍵字
Keywords
異質接面、超薄矽晶太陽電池、CuGaSe2、CuInSe2、太陽電池元件模擬、PC1D
PC1D, CuGaSe2, CuInSe2, heterojunction, solar cell simulation
統計
Statistics
本論文已被瀏覽 5680 次,被下載 485
The thesis/dissertation has been browsed 5680 times, has been downloaded 485 times.
中文摘要
本論文以發展高效率矽基薄膜太陽電池為目標,先以軟體模擬設計高發電效率的元件結構,以提供往後元件製作之依據。
模擬時有一些假設:首先為(1)電極的歐姆接觸良好能有效導出光電流,(2)入射光能完全進入元件而無反射的現象,(3)載子在表面及接面無複合的現象。結果顯示:在150μm之P型單晶矽基板上利用熱擴散法形成P/N接面其能量轉換效率為19.7%,若在此太陽電池元件後方再鍍上P-CuInSe2(CIS)薄膜成為n-Si/p-Si/p-CIS之元件結構,以CIS高光吸收係數的特性彌補結晶矽之不足則其發電效率可由19.7%提升至21.1%。若改善形成P/N接面之擴散製程略微降低表面摻雜濃度至1*1018 cm-3則其轉換效率可達23.3%,同樣再加上CIS薄膜則轉換效率可達24.9%,此時若改變CIS組成比可將效率提升至26%,若在更進一步改良CIS成膜品質使其載子壽命由0.024μs提升至0.18μs則效率可達30.3%。
若改用p-CuGaSe2(CGS)薄膜與150μm 之N型單晶矽基板搭配,由模擬結果可得到與在N型基板進行擴散製程相近的效率,同樣的如果在此結構後方在加上n-CIS薄膜形成p-CGS/n-Si/n-CIS的結構,則其效率可由22.2%提升至26.5%,因此,嘗試成長出高品質CIS、CGS薄膜為首要目標。
接著分別模擬將上述2種元件所使用之矽基板減薄至20μm,經模擬得到效率可分別提升至32.3%及29.5%,因CIS、CGS相較單晶矽更能有效吸光,因此,將矽基板減薄是未來實驗規劃上的一個方向。
然而,異質接面太陽電池會由於晶格的不匹配,將在接面處形成差排,導致載子在接面處的複合,在107cm/s的複合速率下,效率將分別由32.3%及29.5%分別降至11.5%及8.0%。
Abstract
To improve the efficiency of silicon solar cell. We simulate some designed devices by PC1D before fabricating really ones. We propose that ohmic contact between absorbing layer and electrode is well perform. The simulation result shows that: The efficiency will increase from 19.7% to 21.2% when CIS thin film sputter on a P/N junction format by thermal diffusion at P side that the structure of first device n-Si/p-Si/p-CIS due to high absorption coefficient of CIS. The substrate is P type 150μm silicon wafer. If we could lower surface doping concentration to 1*1018 cm-3 during diffusion process, the efficiency would be 23.3%. And collocation CIS could rise efficiency to 24.9%. While we change the composition ratio of CIS thin film, the efficiency will increase to 26.5%. Further, improve CIS quality to increase carrier lifetime up to 0.18μs will rise the efficiency to 30.3%.
Second type device uses P type CGS thin film combine with N type silicon wafer to format a P/N junction, the efficiency is 22.2%, and here we add a N type CIS thin film at N silicon side to fabricate p-CGS/n-Si/n-CIS device, the efficiency is 26.5%, so the priority target is how to form high quality CGS,CIS thin film.
Reduce both silicon wafer thickness to 20μm the efficiency would be 32.3% and 29.5%, due to CGS,CIS thin film high ability of light absorption, so we infer that use thin silicon compare with CIS, CGS thin film would be well performance.
However, there are dislocation formation at interface due to heterojunction lattice mismatch. It causes carrier recombination here. The efficiency of n-Si/p-Si/p-CIS will drop from 32.3% to 11.5% and p-CGS/n-Si/n-CIS from 29.5% to 8.0%.
目次 Table of Contents
第一章 導論 1
1.1前言 1
1.2太陽電池發展史 1
第二章 文獻回顧 3
2.1太陽電池分類 3
2.2太陽電池原理 14
2.3 實驗動機與目的 19
第三章 模擬軟體介紹及模擬結果 20
3.1 PC1D軟體參數設定 20
3.2 模擬結果 25
3.2.1 P型單晶矽太陽電池 25
3.2.2 HIT電池 27
3.2.3 n-Si/p-Si/p-CIS元件設計之模擬 28
3.2.4 CIS薄膜改善對元件效率影響 29
3.2.5基板減薄的影響 31
3.2.6 N型單晶矽太陽電池 32
3.2.7 p-CGS/n-Si 元件設計之模擬 33
3.2.8 p-CGS/n-Si/n-CIS元件設計之模擬 34
3.2.9 CGS薄膜改善對元件效率影響 35
3.2.10基板減薄的影響 36
3.2.11載子複合的影響 37
第四章 元件製作 39
4.1基板清洗 39
4.2擴散製程 40
4.3 CIS鍍製 41
4.4電極製作 41
第五章 結果與討論 43
參考文獻 44
參考文獻 References
[1] A. Marti , G. L. Arafijo, “Limiting efficiencies for photovoltaic energy conversion in multigap systems,” Solar Energy Materials and Solar Cells, pp. 203-222, 9 1996.
[2] D.E. Carlson and C.R. Wronski, “Amorphous silicon solar cell,” 1976.
[3] R. Flatabø, “Optical Properties of Metal Nanoparticle Arrays created using Electron Beam Lithography for Solar Cell Applications,” Department of Chemistry University of Bergen Master Thesis in Nano Science, 6 2014.
[4] W. P. Mulligan, D. H. Rose, M. J. Cudzinovic, D. M. Ceuster, K. R. McIntosh, D. D. Smith and R. M. Swanson, “Manufacture of solar cells with 21% efficiency,” Proceedings of the 19th European PVSEC, p. 387, 2004.
[5] K. R. McIntosh, N. C. Shaw and J. E. Cotter, “Light trapping in sunpower's A-300 solar cells,” 2004.
[6] P. J. Cousins, D. D. Smith,H.C. Luan, J. Manning, T. D. Dennis, A. Waldhauer, K. E. Wilson, G. Harley and W. P. Mulligan, “Generation 3: Improved performance at lower cost,” 35th IEEE PVSC, Honolulu, HI, 6 2010.
[7] N.B. Mason , R. Russell , A. Artigao , J.M. Fernandez, O. Nast-Hartley, J. Sherborne, P. Banda, R. Bueno, G. Martinez and T.M. Bruton, “New Generation BP Solar Saturn Cell in Production The BP7180 Module,” 19th Symposium PV Solarenergie, Kloster Banz (Staffelstein), pp. 10-12, 3 2004.
[8] Z. Wang , P. Han , H. Lu , H. Qian ,L. Chen and Q. Meng, “Advanced PERC and PERL production cells with 20.3% record efficiency for standard commercial p-type silicon wafers,” Progress in Photovoltaics, pp. 260-268, 5 2012.
[9] J. Zhao, A. Wang and M. A. Green, “19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells,” Appl. Phys. Lett. 73, 1998.
[10] J. Zhao, A. Wang, M. A. Green, “High-efficiency PERL and PERT silicon solarcells on FZ and MCZ substrates,” Solar Energy Materials & Solar Cells, pp. 429-435, 2001.
[11] M. Taguchi, A. Yano, S. Tohoda, K. Matsuyama, Y. Nakamura, T. Nishiwaki, K. Fujita, and E. Maruyama, “24.7% Record Efficiency HIT Solar Cell on Thin Silicon Wafer,” IEEE Journal of Photovoltaics, pp. 96-99.
[12] Keiichiro Masuko, Masato Shigematsu, Taiki Hashiguchi, Daisuke Fujishima, Motohide Kai, Naoki Yoshimura, Tsutomu Yamaguchi, Yoshinari Ichihashi, Takahiro Mishima, Naoteru Matsubara, Tsutomu Yamanishi, Tsuyoshi Takahama, Mikio Taguchi, Eiji Maruyama et al, “Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell,” IEEE Journal of Photovoltaics, Vol. 4, No. 6,, 11 2014.
[13] Martin A. Green, Keith Emery, Yoshihiro Hishikawa, Wilhelm Warta, Ewan D. Dunlop, “Solar cell efficiency tables (version 48),” Progress in Photovoltaics, 6 2016.
[14] Y. Inomata, K. Fukui, K. Shirasawa, “Surface texturing of large area multicrystalline silicon solar cells using reactive ion etching method,” Solar Energy Materials and Solar Cells, pp. 237-242, 11 1997.
[15] K. Yamamoto, M. Yoshimi, Y. Tawada, S. Fukuda, T. Sawada, T. Meguro, H. Takata, T. Suezaki, Y. Koi, K. Hayashi, T. Suzuki, M. Ichikawa, A. Nakajima, “Large area thin film Si module,” Solar Energy Materials and Solar Cells, pp. 449-455, 10 2002.
[16] P. Agarwal , H. Povolny and S. Han, X. Deng, “Study of a-SiGe:H films and n–i–p devices used in high efficiency triple junction solar cells,” Journal of Non-Crystalline Solids, pp. 1213-1218, 4 2004.
[17] M. I. Kabir, S. A. Shahahmadi, V. Lim, S. Zaidi, K. Sopian, and N. Amin, “Amorphous Silicon Single-Junction Thin-Film Solar Cell Exceeding 10% Efficiency by Design Optimization,” International Journal of Photoenergy Volume 2012, 2012.
[18] E. Maruyama , S. Okamoto, A. Terakawa, W. Shinohara, M. Tanaka, S. Kiyama, “Toward stabilized 10% efficiency of large-area (>5000 cm2) a-Si/a-SiGe tandem solar cells using high-rate deposition,” Solar Energy Materials and Solar Cells, pp. 339-349, 10 2002.
[19] J. Yang, A. Banerjee and S. Guha, “Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies,” Appl. Phys. Lett., p. 2975, 1997.
[20] B. Yan, G. Yue, J. M. Owens, J. Yang, and S. Guha, “Over 15% Efficient Hydrogenated Amorphous Silicon Based Triple-Junction Solar Cells,” Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on (Volume:2 ), pp. 1477-1480, 5 2006.
[21] 顧鴻濤, 太陽能電池元件導論, 2008, p. 90.
[22] L. D. Partain, Solar cells and their applications, 1995.
[23] T. Takamoto, M. Kaneiwa, M. Imaizumi and M. Yamaguchi, “InGaP/GaAs-based multijunction solar cells,” progress in photovoltaics, 8 2005.
[24] A. N. Tiwari, G. Khrypunov, F. Kurdzesau, D. L. Batzner, A. Romeo and H. Zogg, “CdTe Solar Cell in a Novel Configuration,” progress in photovoltaics, pp. 1-6, 11 2003.
[25] NREL, “Research Cell Efficiency Records”.
[26] A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, 2003.
[27] A. Chirilă, P. Reinhard, F. Pianezzi, P. Bloesch, A. R. Uhl, C. Fella, L. Kranz, D. Keller, C. Gretener, H. Hagendorfer, D. Jaeger, R. Erni, S. Nishiwaki, S. Buecheler and A. N. Tiwari, “Potassium-induced surface modification of Cu(In,Ga)Se2 thin films for high-efficiency solar cells,” Nature Materials, pp. 1107-1111, 2013.
[28] H. Sugimoto, “High efficiency and large volume production of CIS-based modules,” 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC), pp. 2767-2770, 6 2014.
[29] W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi, “Device characteristics of CZTSSe thin‐film solar cells with 12.6% efficiency,” Advanced Energy Materials, 4 2014.
[30] M. Grätzel, “Review Dye-sensitized solar cells,” Journal of Photochemistry and Photobiology C: Photochemistry Reviews, pp. 145-153, 2003.
[31] Jun Du, Zhonglin Du, Jin-Song Hu, Zhenxiao Pan, Qing Shen, Jiankun Sun, Donghui Long,Hui Dong, Litao Sun, Xinhua Zhong and Li-Jun Wan, “Zn–Cu–In–Se Quantum Dot Solar Cells with a Certified Power Conversion Efficiency of 11.6%,” JACS, pp. 4201-4209, 2016.
[32] P. V. Kamat, “Boosting the Efficiency of Quantum Dot Sensitized Solar Cells through Modulation of Interfacial Charge Transfer,” Accounts Chemical Research, pp. 1906-1915, 2012.
[33] A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, X. Wang, G. Konstantatos, R. Debnath, L. Levina,I. Raabe, M. K. Nazeeruddin, M. Gra¨ tzel and E. H. Sargent, “Depleted-Heterojunction Colloidal Quantum Dot Solar Cells,” ACS Nano, pp. 3374-3380, 2010.
[34] Y. Tsunomura, Y. Yoshimine, M. Taguchi, T. Baba, T. Kinoshita, H. Kanno, H. Sakata, E. Maruyama, M. Tanaka, Solar Energy Materials and Solar Cells, pp. 670-673, 6 2009.
[35] S. M. Iftiquar, Y. Lee, M. Ju, N. Balaji, S. K. Dhungel and J. Yi, Photodiodes - From Fundamentals to Applications Chapter 3:Fabrication of Crystalline Silicon Solar Cell with Emitter Diffusion, SiNx Surface Passivation and Screen Printing of Electrode.
[36] S. R. Kodigala, Thin Films and Nanostructures Cu(In1-xGax)Se2 Based Thin Film Solar Cells, California State University Volume 35, p. 332.
[37] Anita R. Warrier, K.G. Deepa, Tina Sebastian, C. Sudha Kartha, K.P. Vijayakumar, “Non-destructive evaluation of carrier transport properties in CuInS2 and CuInSe2 thin films using photothermal deflection technique,” Thin Solid Films 518, pp. 1767-1773, 2010.
[38] A. G. Aberle, “Surface Passivation of Crystalline Silicon Solar Cells : A Review,” Progress In Photovoltaics : Research And Applications, pp. 473-487, 8 2000.
[39] Hocine Ghembaza, Abdellatif Zerga, Rachid Saïm, “Efficiency Improvement Of Crystalline Silicon Solar Cells By Optimizing The Doping Profile Of POCl3 Diffusion,” International journal of scientific & technology research volume 3,issue 1, 1 2014.
[40] H. Wagner, A. Dastgheib-Shirazi, R. Chen, S.T. Dunham,M. Kessler and P.P. Altermatt, “improving the predictive power of modeling the emitter diffusion by fully including the phoshsilicate glass (psg) layer,” IEEE, 2011.
[41] P. K. Basu, S. K. Dhungel, Kyunghae Kim, K. Chakrabarty and Junsin Yi, “Novel Low-Cost Technique of Emitter-Junction Optimization,” Journal of the Korean Physical Society, Vol. 46, No. 5, pp. 1237-1242, 5 2005.
[42] 蔡進譯, 物理雙月刊(廿七卷五期), 2005.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code