Responsive image
博碩士論文 etd-0805117-102833 詳細資訊
Title page for etd-0805117-102833
論文名稱
Title
常壓電漿與電噴灑同軸雙游離源流場優化分析及其於農藥檢測之應用
Flow Field Optimization for Atmospheric Plasma and Electrospray Dual Ion Sources and Its Applications on Pesticide Detection
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
90
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-26
繳交日期
Date of Submission
2017-09-07
關鍵字
Keywords
農藥殘留、熱脫附式探針、計算流體力學、雙游離源、大氣質譜法
thermal desorption probe, computational fluid dynamics, dual ion source, ambient mass spectrometry, pesticide residues
統計
Statistics
本論文已被瀏覽 5712 次,被下載 0
The thesis/dissertation has been browsed 5712 times, has been downloaded 0 times.
中文摘要
本研究針對十字型同軸雙游離源進行特性分析,改善開發階段所設計不便之處,並以此架構量測的最佳化參數做樣本分析檢測。首先利用計算流體力學的數值分析方法運算常壓介電質放電氦氣電漿之流場,並透過質譜儀量測氦氣電漿總離子濃度進行實驗驗證。本研究利用實驗室前人之設計,用來產生介電質放電氦氣電漿之對稱十字型玻璃管架構作為模型,透過ANSYS軟體分析氦氣從玻璃管噴出的流場行為,並繪製出流體速度分佈方便觀察。此外,本研究燃燒市售的香製造出可視化流場並與模擬結果相互比對,進而確認模擬邊界條件的正確性。模擬結果可觀察到玻璃管出口最高速度範圍,而因氦氣質量密度低,由此也可觀察出口流速急劇下降、氣體擴散情形。然而,因氦氣介穩態離子將隨著氣體至流場所及之處,本研究模擬改變玻璃管出口及毛細管擺放位置,並利用質譜儀偵測,最終獲得與模擬匹配之總離子濃度,且最高訊號達5.25×(10^10) ion/cm^3,相較於前人的10^9濃度訊號高於一個數量級。另外,在以往同軸式電噴灑及大氣壓力化學雙游離源實驗上最大的問題,電噴灑離子濃度會遠高於電漿所產生之離子兩至三個數量級訊號,導致在同時量測極性與非極性分析物時,極性物質會強烈得壓低非極性物質的訊號,故此部分參考本研究特性參數的收集,提高電漿離子濃度、降低電噴灑離子濃度之訊號調整,成功使雙游離源模式同時開啟時,離子濃度維持在相同次方訊號,並以毛細管內伸3 - 4 mm,由玻璃管去限制電噴灑噴霧,玻璃外管徑升溫至60℃加熱氣體,氦氣氣體流量0.15 SLM,正對質譜入口偏移2 mm位置,透過實驗證實上述參數為此架構之最佳化參數。
  在天然樣本檢測應用方面,樣本選擇人們每天需攝取的蔬果作為檢測樣本,針對表皮所殘留之農藥做物質分析,成功使用改良式熱脫附探針,在蔬果表皮上,同時量測到不同範圍之極性及弱極性化合物。
Abstract
This study focuses on analyzing the characteristics of the crisscross symmetric coaxial dual ion source in order to discard the weakness of the initial design. Moreover, the optimized parameters obtained from this survey would be taken for the sample analysis. Computational fluid dynamics (CFD), a numerical analysis method to compute the flow field of the ambient dielectric discharge helium plasma, is adopted with the use of the ANSYS software. Hence, mass spectrometry is carried out to measure the total ion concentration of the helium plasma as the experimental verification. According to the experiment design of previous researchers, a crisscross symmetric coaxial glass tube is used as model to produce ambient dielectric discharge helium plasma. ANSYS is used to analyze the flow field movement of the helium jetted from the glass tube outlet as well as outputting the fluid velocity profile for observation. In order to confirm the accuracy of the analog border conditions, joss sticks are burnt to demonstrate a visualized flow field for the comparison with the simulation results. The simulation results show that the gases have maximum speed at glass tube outlet due to the low mass and the low density of helium gas, and the diffusion speed of the gas particles is drastically reduced at glass tube outlet. In order to get the optimized parameters, the glass tube outlet and capillary tube position are relocated so as to minimize the possibility of helium metastable ions flowing to the flow field. Eventually, a result of high ion intensity of 5.25×(10^10) ions/cm3 is obtained, matching to the results from the simulation and MS detection. During the previous experiment of the coaxial ESI+APCI source, the ion concentration of ESI are 2 to 3 orders higher than the ion concentration of APCI such that the signals of the nonpolar compounds are covered by the intense signal of the polar ones during the simultaneous detection. Therefore, ESI intensity is reduced by placing capillary in glass tube for 3 to 4 mm deeper to limit electrospray, moving the plasma gas outlet towards the MS inlet with 0.15 SLM flow rate, and heating the gas to 60℃ to increase plasma ion intensity. Results show that the pesticide on the surface of fruits and vegetables can be detected successfully. In addition, the polar and weak polar chemical compounds on the sample skin could also be detected simultaneously via the modified thermal desorption probe.
目次 Table of Contents
論文審定書 i
論文公開授權書 ii
致謝 iii
中文摘要 iv
Abstract v
目錄 vii
圖目錄 x
表目錄 xiii
符號表 xiv
簡寫表 xvi
第一章 緒論 1
1.1 前言 1
1.2 常壓電漿與電噴灑游離質譜法之介紹 3
1.2.1 常壓電漿之介電質放電電漿游離源 5
1.2.2 電噴灑游離源 9
1.3 大氣壓力及熱脫附游離質譜法 13
1.3.1 大氣壓力游離步驟 13
1.3.2 熱脫附游離法文獻回顧 17
1.4 雙游離源整合質譜分析 21
1.4.1 整合型雙游離源 22
1.4.2 同軸型雙游離源 22
1.5 流體力學數值模擬分析 24
1.6 論文架構 25
第二章 原理及動機目的 26
2.1 電噴灑游離原理 26
2.2 電漿游離機制 30
2.3 計算流體力學數學模型 33
2.3.1 統御方程式 33
2.3.2 數學模型 33
2.4 十字對稱型同軸式雙游離源 35
2.4.1 電漿游離之十字對稱型設計介紹 35
2.5 研究動機與目的 37
2.5.1 研究動機 37
2.5.2 研究目的 37
第三章 研究方法 38
3.1 數值模型 38
3.1.1 模型介紹 38
3.1.2 分析流程介紹 38
3.1.3 參數測試 40
3.2 系統架設與實驗設備 42
3.2.1 實驗裝置 42
3.2.2 實驗系統及檢測流程 46
3.3 實驗藥品與試劑 47


第四章 實驗結果與討論 48
4.1 實驗最佳化參數與流場優化分析 48
4.1.1 實驗數據分析與流場模擬 49
4.1.2 平衡電噴灑游離源及電漿游離源之偵測訊號 55
4.2 熱脫附探針檢測複方樣本 57
4.3.1 單電噴灑模式檢測市售感冒糖漿 58
4.3.2 單電漿模式偵測複方中草藥 60
4.3 蔬果農藥殘留檢測 61
4.3.1 雙游離源模式檢測蔬果表皮之農藥殘留 61
第五章 結論與未來展望 65
5.1 結論 65
5.2 未來展望 67
參考文獻 68
自述 73
參考文獻 References
[1] Z. Takats, J. M. Wiseman, B. Gologan, and R. G. Cooks, "Mass spectrometry sampling under ambient conditions with desorption electrospray ionization," Science, vol. 306, pp. 471-473, 2004.
[2] R. G. Cooks, Z. Ouyang, Z. Takats, and J. M. Wiseman, "Ambient mass spectrometry," Science, vol. 311, pp. 1566-1570, 2006.
[3] Z. Takats, J. M. Wiseman, and R. G. Cooks, "Ambient mass spectrometry using desorption electrospray ionization (DESI): instrumentation, mechanisms and applications in forensics, chemistry, and biology," Journal of Mass Spectrometry, vol. 40, pp. 1261-1275, 2005.
[4] T. Guo, W. Yong, Y. Jin, L. Zhang, J. Liu, S. Wang, Q. Chen, Y. Dong, H. Su, and T. Tan, "Applications of DART-MS for food quality and safety assurance in food supply chain," Mass Spectrometry Reviews, vol. 36, pp. 161-187, 2017.
[5] U. Kogelschatz, B. Eliasson, and W. Egli, "From ozone generators to flat television screens: history and future potential of dielectric-barrier discharges," Pure and Applied Chemistry, vol. 71, pp. 1819-1828, 1999.
[6] X. Ding and Y. Duan, "Plasma-based ambient mass spectrometry techniques: The current status and future prospective," Mass Spectrometry Reviews, vol. 34, pp. 449-473, 2015.
[7] M. Smoluch, P. Mielczarek, and J. Silberring, "Plasma‐based ambient ionization mass spectrometry in bioanalytical sciences," Mass Spectrometry Reviews, vol. 35, pp. 22-34, 2016.
[8] N. Na, M. Zhao, S. Zhang, C. Yang, and X. Zhang, "Development of a dielectric barrier discharge ion source for ambient mass spectrometry," Journal of the American Society for Mass Spectrometry, vol. 18, pp. 1859-1862, 2007.
[9] H. Hayen, A. Michels, and J. Franzke, "Dielectric barrier discharge ionization for Liquid Chromatography/Mass Spectrometry," Analytical Chemistry, vol. 81, pp. 10239-10245, 2009.
[10] J. D. Harper, N. A. Charipar, C. C. Mulligan, X. Zhang, R. G. Cooks, and Z. Ouyang, "Low-temperature plasma probe for ambient desorption ionization," Analytical Chemistry, vol. 80, pp. 9097-9104, 2008.
[11] A. U. Jackson, J. F. Garcia-Reyes, J. D. Harper, J. S. Wiley, A. Molina-Díaz, Z. Ouyang, and R. G. Cooks, "Analysis of drugs of abuse in biofluids by low temperature plasma (LTP) ionization mass spectrometry," Analyst, vol. 135, pp. 927-933, 2010.
[12] J. F. García‐Reyes, F. Mazzoti, J. D. Harper, N. A. Charipar, S. Oradu, Z. Ouyang, G. Sindona, and R. G. Cooks, "Direct olive oil analysis by low‐temperature plasma (LTP) ambient ionization mass spectrometry," Rapid Communications in Mass Spectrometry, vol. 23, pp. 3057-3062, 2009.
[13] J. F. Garcia-Reyes, J. D. Harper, G. A. Salazar, N. A. Charipar, Z. Ouyang, and R. G. Cooks, "Detection of explosives and related compounds by low-temperature plasma ambient ionization mass spectrometry," Analytical Chemistry, vol. 83, pp. 1084-1092, 2010.
[14] A. W. Nørgaard, V. Kofoed-Sørensen, B. Svensmark, P. Wolkoff, and P. A. Clausen, "Gas chromatography interfaced with atmospheric pressure ionization-quadrupole time-of-flight-mass spectrometry by low-temperature plasma ionization," Analytical Chemistry, vol. 85, pp. 28-32, 2012.
[15] J. Zeleny, "The electrical discharge from liquid points, and a hydrostatic method of measuring the electric intensity at their surfaces," Physical Review, vol. 3, p. 69-91, 1914.
[16] J. Zeleny, "Instability of electrified liquid surfaces," Physical Review, vol. 10, p. 1-6, 1917.
[17] L. L. Mack, P. Kralik, A. Rheude, and M. Dole, "Molecular beams of macroions. II," The Journal of Chemical Physics, vol. 52, pp. 4977-4986, 1970.
[18] M. Dole, L. Mack, R. Hines, R. Mobley, L. Ferguson, and M. d. Alice, "Molecular beams of macroions," The Journal of Chemical Physics, vol. 49, pp. 2240-2249, 1968.
[19] M. Yamashita and J. B. Fenn, "Electrospray ion source. Another variation on the free-jet theme," The Journal of Physical Chemistry, vol. 88, pp. 4451-4459, 1984.
[20] A. P. Bruins, T. R. Covey, and J. D. Henion, "Ion spray interface for combined liquid chromatography/atmospheric pressure ionization mass spectrometry," Analytical Chemistry, vol. 59, pp. 2642-2646, 1987.
[21] J. H. Wahl, D. R. Goodlett, H. R. Udseth, and R. D. Smith, "Attomole level capillary electrophoresis-mass spectrometric protein analysis using 5. mu. m id capillaries," Analytical Chemistry, vol. 64, pp. 3194-3196, 1992.
[22] D. C. Gale and R. D. Smith, "Small volume and low flow‐rate electrospray lonization mass spectrometry of aqueous samples," Rapid Communications in Mass Spectrometry, vol. 7, pp. 1017-1021, 1993.
[23] M. S. Wilm and M. Mann, "Electrospray and Taylor-Cone theory, Dole's beam of macromolecules at last?," International Journal of Mass Spectrometry and Ion Processes, vol. 136, pp. 167-180, 1994.
[24] M. Wilm and M. Mann, "Analytical properties of the nanoelectrospray ion source," Analytical Chemistry, vol. 68, pp. 1-8, 1996.
[25] A. P. Bruins, "Mechanistic aspects of electrospray ionization," Journal of Chromatography A, vol. 794, pp. 345-357, 1998.
[26] G. Taylor, "Disintegration of water drops in an electric field," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, vol. 280, pp. 383-397, 1964.
[27] P. Kebarle and L. Tang, "From ions in solution to ions in the gas phase," Analytical Chemistry, vol. 65, pp. 972A-986A, 1993.
[28] A. Gomez and K. Tang, "Charge and fission of droplets in electrostatic sprays," Physics of Fluids, vol. 6, pp. 404-414, 1994.
[29] D. B. Hager, N. J. Dovichi, J. Klassen, and P. Kebarle, "Droplet electrospray mass spectrometry," Analytical Chemistry, vol. 66, pp. 3944-3949, 1994.
[30] M. Z. Huang, S. C. Cheng, Y. T. Cho, and J. Shiea, "Ambient ionization mass spectrometry: a tutorial," Analytica Chimica Acta, vol. 702, pp. 1-15, 2011.
[31] C. P. Kuo and J. Shiea, "Application of direct electrospray probe to analyze biological compounds and to couple to solid-phase microextraction to detect trace surfactants in aqueous solution," Analytical Chemistry, vol. 71, pp. 4413-4417, 1999.
[32] R. Haddad, H. M. Milagre, R. R. Catharino, and M. N. Eberlin, "Easy ambient sonic-spray ionization mass spectrometry combined with thin-layer chromatography," Analytical Chemistry, vol. 80, pp. 2744-50, 2008.
[33] Y. Song and R. G. Cooks, "Atmospheric pressure ion/molecule reactions for the selective detection of nitroaromatic explosives using acetonitrile and air as reagents," Rapid Communications in Mass Spectrometry, vol. 20, pp. 3130-3138, 2006.
[34] J. Shiea, M. Z. Huang, H. J. Hsu, C. Y. Lee, C. H. Yuan, I. Beech, and J. Sunner, "Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids," Rapid Commun Mass Spectrom, vol. 19, pp. 3701-4, 2005.
[35] C. M. Hong, F. C. Tsai, and J. Shiea, "A multiple channel electrospray source used to detect highly reactive ketenes from a flow pyrolyzer," Analytical Chemistry, vol. 72, pp. 1175-1178, 2000.
[36] H. J. Hsu, T. L. Kuo, S. H. Wu, J. N. Oung, and J. Shiea, "Characterization of synthetic polymers by electrospray-assisted pyrolysis ionization-mass spectrometry," Analytical Chemistry, vol. 77, pp. 7744-7749, 2005.
[37] H. J. Hsu, J. N. Oung, T. L. Kuo, S. H. Wu, and J. Shiea, "Using electrospray-assisted pyrolysis ionization/mass spectrometry for the rapid characterization of trace polar components in crude oil, amber, humic substances, and rubber samples," Rapid Communications in Mass Spectrometry, vol. 21, pp. 375-384, 2007.
[38] H. Chen, Z. Ouyang, and R. G. Cooks, "Thermal production and reactions of organic ions at atmospheric pressure," Angewandte Chemie International Edition, vol. 45, pp. 3656-3660, 2006.
[39] H. Inoue, H. Hashimoto, S. Watanabe, Y. T. Iwata, T. Kanamori, H. Miyaguchi, K. Tsujikawa, K. Kuwayama, N. Tachi, and N. Uetake, "Thermal desorption counter‐flow introduction atmospheric pressure chemical ionization for direct mass spectrometry of ecstasy tablets," Journal of Mass Spectrometry, vol. 44, pp. 1300-1307, 2009.
[40] F. Basile, S. Zhang, Y. S. Shin, and B. Drolet, "Atmospheric pressure-thermal desorption(AP-TD)/electrospray ionization-mass spectrometry for the rapid analysis of Bacillus spores," Analyst, vol. 135, pp. 797-803, 2010.
[41] O. S. Ovchinnikova, M. P. Nikiforov, J. A. Bradshaw, S. Jesse, and G. J. Van Berkel, "Combined atomic force microscope-based topographical imaging and nanometer-scale resolved proximal probe thermal desorption/electrospray ionization–mass spectrometry," Acs Nano, vol. 5, pp. 5526-5531, 2011.
[42] T. Ghislain, P. Faure, and R. Michels, "Detection and monitoring of PAH and oxy-PAHs by high resolution mass spectrometry: comparison of ESI, APCI and APPI source detection," Journal of The American Society for Mass Spectrometry, vol. 23, pp. 530-536, 2012.
[43] M. Himmelsbach, W. Buchberger, and E. Reingruber, "Determination of polymer additives by liquid chromatography coupled with mass spectrometry. A comparison of atmospheric pressure photoionization (APPI), atmospheric pressure chemical ionization (APCI), and electrospray ionization (ESI)," Polymer Degradation and Stability, vol. 94, pp. 1213-1219, 2009.
[44] O. A. Ismaiel, M. S. Halquist, M. Y. Elmamly, A. Shalaby, and H. T. Karnes, "Monitoring phospholipids for assessment of ion enhancement and ion suppression in ESI and APCI LC/MS/MS for chlorpheniramine in human plasma and the importance of multiple source matrix effect evaluations," Journal of Chromatography B, vol. 875, pp. 333-343, 2008.
[45] A. Albert and C. Engelhard, "Characteristics of low-temperature plasma ionization for ambient mass spectrometry compared to electrospray ionization and atmospheric pressure chemical ionization," Analytical Chemistry, vol. 84, pp. 10657-10664, 2012.
[46] S. A. Smith, T. A. Blake, D. R. Ifa, R. G. Cooks, and Z. Ouyang, "Dual-source mass spectrometer with MALDI-LIT-ESI configuration," Journal of Proteome Research, vol. 6, pp. 837-845, 2007.
[47] R. T. Gallagher, M. P. Balogh, P. Davey, M. R. Jackson, I. Sinclair, and L. J. Southern, "Combined electrospray ionization - atmospheric pressure chemical ionization source for use in high-throughput LC-MS applications," Analytical Chemistry, vol. 75, pp. 973-977, 2003.
[48] L. M. Lang, P. W. Dalsgaard, and K. Linnet, "Quantitative analysis of cortisol and 6β‐hydroxycortisol in urine by fully automated SPE and ultra‐performance LC coupled with electrospray and atmospheric pressure chemical ionization (ESCi)‐TOF‐MS," Journal of Separation Science, vol. 36, pp. 246-251, 2013.
[49] S. C. Cheng, S. S. Jhang, M. Z. Huang, and J. Shiea, "Simultaneous detection of polar and nonpolar compounds by ambient mass spectrometry with a dual electrospray and atmospheric pressure chemical ionization source," Analytical Chemistry, vol. 87, pp. 1743-1748, 2015.
[50] 陳俊邑, "氦氣電漿及電噴灑雙游離源系統於質譜分析之應用," 機械與機電工程學系研究所, 中山大學, 2016.
[51] B. B. Schneider, E. G. Nazarov, F. Londry, P. Vouros, and T. R. Covey, "Differential mobility spectrometry/mass spectrometry history, theory, design optimization, simulations, and applications," Mass Spectrometry Reviews, vol. 35, pp. 687-737, 2016.
[52] Q. Yu, L. Tang, K. Ni, X. Qian, and X. Wang, "Computer simulations of a new toroidal-cylindrical ion trap mass analyzer," Rapid Communications in Mass Spectrometry, vol. 30, pp. 2271-2278, 2016.
[53] X. Zhou and Z. Ouyang, "Ion transfer between ion source and mass spectrometer inlet: electro-hydrodynamic simulation and experimental validation," Rapid Communications in Mass Spectrometry, vol. 30, pp. 29-33, 2016.
[54] P. Kebarle and U. H. Verkerk, "Electrospray: from ions in solution to ions in the gas phase, what we know now," Mass Spectrom Review, vol. 28, pp. 898-917, 2009.
[55] C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, pp. 2-30, 2006.
[56] R. B. Cody, J. A. Laramée, and H. D. Durst, "Versatile new ion source for the analysis of materials in open air under ambient conditions," Analytical Chemistry, vol. 77, pp. 2297-2302, 2005.
[57] ANSYS Fluent, "User’s guide release 16.1," Ansys Inc, 2015.
[58] http://www.labwrench.com/?equipment.view/equipmentNo/4229/Thermo-Scien
   tific/LCQ-Fleet-trade--Ion-Trap-Mass-Spectrometer/
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.17.79.60
論文開放下載的時間是 校外不公開

Your IP address is 3.17.79.60
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code