Responsive image
博碩士論文 etd-0805117-134039 詳細資訊
Title page for etd-0805117-134039
論文名稱
Title
用於儲能系統之汰役電池充放電策略
Charging and Discharging Strategies of Second Life Battery in Energy Storage System
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
105
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-08-24
繳交日期
Date of Submission
2017-09-07
關鍵字
Keywords
汰役電池、功率優化器、充放電策略、電動車、儲能系統
Battery Storage System, Electric Vehicle, Used Batteries, Power Optimizer, Charging and Discharging Strategies
統計
Statistics
本論文已被瀏覽 5737 次,被下載 11
The thesis/dissertation has been browsed 5737 times, has been downloaded 11 times.
中文摘要
儲能系統是未來再生能源併入電網以維持電力品質及提高系統穩定性不可或缺的重要設備,但是目前由於其建置成本昂貴,進而會降低裝設意願。如今電動車的普及,汰役下來的電池作為儲能設備變成降低儲能設備建置成本的主要方案。電動車電池當其健康狀態低於80%時就已不適合在電動車繼續使用,但是實際上它還是含有相當不錯的儲、釋能能力。本論文透過汰役電池與功率優化器組合成可調度儲能設備,解決因各別電池健康狀態、電量狀態等差異造成互相影響,使得電能無法有效充入及釋出的問題。本研究對於汰役電池組作為儲能設備的使用提出一套充放電策略,根據電池狀態及負載需求建立最佳化問題求解各汰役電池組最佳充、放電功率比例,同時滿足負載需求,使系統在儲釋能時可以更有效率,以提高汰役電池二次使用價值。
Abstract
Battery storage systems play an important role in integrating renewable energy into the grid, however they are less popular due to their high initial cost. When the state-of-health (SOH) of the batteries in Electric Vehicle (EV) are lower than 80%, they are not suitable for EVs. But, they still can be used in energy storage applications. If the used EV batteries could be utilized in battery storage system, it can significantly reduce the initial cost of storage system. In this thesis, a power optimizer concept is introduced to manage the batteries with varying levels of SOH and state-of-charge (SOC). The charging & discharging currents of individual battery packs are controlled to deliver the optimal power and energy capacity of the whole battery energy system. Study results indicate that using the proposed charging and discharging strategies, it can reduce the initial cost of storage system and increase use value of the batteries.
目次 Table of Contents
論文審定書 i
致謝 ii
中文摘要 iii
Abstract iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2 相關文獻回顧 2
1.2.1 二次電池類別比較 2
1.2.2 汰役電池特性與回收利用 7
1.2.3 電池管理系統 9
1.2.4 電池電量平衡電路 11
1.2.5 功率優化器應用 17
1.3 論文貢獻與章節架構 20
第二章 電池等效模型與電池狀態估測 21
2.1 電池等效模型 21
2.2 電池充電技術 26
2.3 電池電量狀態估測技術 30
2.4 電池健康狀態估測技術 33
第三章 儲能設備架構-功率優化器與汰役電池結合模組 36
3.1 鎳氫電池特性 36
3.2 功率優化器-降昇壓型轉換器 38
3.3 含功率優化器之串聯模組架構 45
3.4 模組以先串後並聯方式連接架構 46
第四章 含功率優化器之汰役電池充放電策略及模擬實測結果 48
4.1 模組串聯放電運轉 48
4.1.1 使用環境假設與目標說明 48
4.1.2 儲能系統放電流程 49
4.1.3 最佳化放電目標函數與限制條件 50
4.1.4 放電模擬結果比較 53
4.2 模組串聯充電運轉 69
4.2.1 使用情境假設與目標說明 69
4.2.2 儲能系統充電流程 70
4.2.3 最佳化充電目標函數與限制條件 71
4.2.4 充電模擬結果比較 73
4.3 模組串並聯放電運轉模擬分析 76
4.4 放電實例驗證 80
4.4.1 測試電路架構說明 80
4.4.2 模組串聯放電實驗 81
第五章 結論與未來研究方向 86
5.1 結論 86
5.2 未來研究方向 87
參考文獻 89
參考文獻 References
[1] SolarEdge, “Technical note SolarEdge fixed string voltage, concept of operation,” (2012)
[2] D. Corrigan and A. Masias, "Batteries for electric and hybrid vehicles. In: Reddy TB (ed) Linden’s handbook of batteries", 4 th edn, McGraw Hill, New York, 2011.
[3] 楊錢威,「智慧型居家清潔機器人之充電站研製」,國立成功大學碩士論文,民國94年6月。
[4] 陳怡萍,「鉛酸與鋰離子蓄電池之電量估測」,國立中山大學碩士論文,民國96年6月。
[5] M. S. Sudhan, “Advances in VRLA battery technology for telecommunications”, Journal of Power Sources Vol. 168, pp.40 – 48, 2007.
[6] 張瓊仁,「鎳氫電池電容量管理之研究」,國立中山大學碩士論文,民國94年7月。
[7] Hatsukari, “High power Ni-MH Battery of Toyota NHW20 Prius”. July 12, 2017, From https://commons.wikimedia.org/wiki/File:NiMH_Battery_01gJPG.
[8] 廖國宏,「磷酸鋰鐵陰極材料研究」,國立暨南國際大學,碩士論文,民國93年7月。
[9] 陳開瑞,「用於電動車之磷酸鋰鐵電池電量估測」,國立中山大學,碩士論文,民國101年8月。
[10] 陳明勇,「電動車電池之電性簡介」,標準與檢驗142其,p80~p90,民國99年10月
[11] J. D. Dogger, B. Roossien and F. D. J. Nieuwenhout, “Characterization of Li-Ion Batteries for Intelligent Management of Distributed Grid-Connected Storage,” IEEE Transactionn on Energy Conversion, vol.26, no.1, pp.256.263, March 2011.
[12] 周志勳,「電動車汰役電池檢測技術與循環經濟應用商機」,承德科技,民國106年1月19日。
[13] H. Rahimi-Eichi, U. Ojha, F. Baronti, and M. Y. Chow, “Battery management system: An overview of its application in the smart grid and electric vehicles,” IEEE Industrial Electronics Magazine, 7(2), 4-16, 2013.
[14] M. Daowd, N. Omar, P. V. D. Bossche, and J. V. Mierlo, “A review of passive and active battery balancing based on MATLAB/Simulink,” J. Int. Rev. Electr. Eng, 6, 2974-2989, 2011.
[15] S. W. Moore, and P. J. Schneider, “A review of cell equalization methods for lithium ion and lithium polymer battery systems,” no. 2001-01-0959. SAE Technical Paper, 2011.
[16] M. Daowd, N. Omar, P. V. D. Bossche, and J. V. Mierlo, “Passive and active battery balancing comparison based on MATLAB simulation,” In Vehicle Power and Propulsion Conference (VPPC), 2011 IEEE (pp. 1-7). IEEE, September 2011.
[17] C. S. Moo, Y. C. Hsieh, I. S. Tsai, and J. C. Cheng, “Dynamic charge equalisation for series-connected batteries,” IEE Proceedings-Electric Power Applications, 150(5), 501-505., 2003
[18] N. H. Kutkut, D. M. Divan, and D. W. Novotny, “Charge equalization for series connected battery strings,” IEEE transactions on industry applications, 31(3), 562-568, 1995.
[19] H. K. Nasser, and M. Divan. Deepak, “Dynamic equalization techniques for series battery stacks,” Telecommunications Energy Conference, INTELEC'96, 18th International. IEEE, 1996.
[20] Energysage (2009), String inverter vs. Microinvertrs vs. Power optimizer. July 20, 2017, from https://www.energysage.com/solar/101/string-inverters-microinverters-power-optimizers/.
[21] S. Harb, M. Kedia, H. Zhang, and R. S. Balog, “Microinverter and string inverter grid-connected photovoltaic system—A comprehensive study,” In Photovoltaic Specialists Conference (PVSC) IEEE 39th (pp. 2885-2890). IEEE, June 2013.
[22] S. M. Chen, T. J. Liang, and K. R. Hu “Design, analysis, and implementation of solar power optimizer for DC distribution system,” IEEE transactions on power electronics, 28(4), pp.1764-1772, 2013.
[23] 台灣區電機電子工業同業公會 (2010) , 「太陽能發電“微”架構之路是一片坦途還是崎嶇難行」,2017年7月22日,取自http://www.teema.org.tw/exhibition-detail.aspx?infoid=4945
[24] A. A. H. Hussein and I. Batarseh, “An overview of generic battery models," IEEE Power and Energy Society General Meeting, San Diego, CA, pp. 1-6, 2011.
[25] O. Treblay, L.A. Dessaint, “Experimental validation of a battery dynamic model for EV applications”, World Electric Vehicle Journal 2009.
[26] MathWorks (2017), “Implement generic battery model”. July 20, 2017, From https://www.mathworks.com/help/physmod/sps/powersys/ref/battery.html?s_tid=srchtitle.
[27] C. C. Hua and M. Y. Lin, “A study of charging control of lead-acid battery for electric vehicles,” Industrial Electronics, 2000. ISIE 2000. Proceedings of the 2000 IEEE International Symposium on, vol. 1, p.p135-140, 2000
[28] 許家興,「電動車電池類型與電池基礎介紹」,財團法人車輛研究測試中心,民國98年10月。
[29] 奇蹟綠能科技 (2012),「電池老化進而衍生至電池優化」,2017年7月12日,取自 http://www.mcstw.com/download/mcstw-99.pdf
[30] 周承練,「使用內電動勢法於磷酸鐵鋰電池之電量估測」,國立成功大學,碩士論文,民國98年7月。
[31] N. Watrin, B. Blunier, and A. Miraoui, “Review of adaptive systems for lithium batteries state-of-charge and state-of-health estimation,” in Proceedings of IEEE Transportation Electrification Conference and Expo, pp. 1–6, Dearborn, Mich, USA, June 2012.
[32] W. Y. Chang, “The state of charge estimating methods for battery: A review. ISRN Applied Mathematics,” 2013.
[33] 張永昌,「鉛酸電池電量預測及壽命分析之研究」,國立彰化師範大學,碩士論文,民國92年6月。
[34] S. Sato, A. Kawamura. “A new estimation method of state of charge using terminal voltage and internal resistance for lead acid battery,” In Power Conversion Conference, 2002. PCC-Osaka 2002. Proceedings of the (Vol. 2, pp. 565-570). IEEE, 2002.
[35] 王致凱,「具電池電量與健康狀態線上校準之電池電源系統」,國立中山大學,碩士論文,民國105年7月。
[36] 梁翊民,「磷酸鋰鐵電池之線上健康狀態估測」,國立中山大學,碩士論文,民國105年7月。
[37] H. Dai, X. Wei and Z. Sun, “A new SOH prediction concept for the power lithium-ion battery used on HEVs,” IEEE Vehicle Power and Propulsion Conference, Dearborn, MI, pp. 1649-1653, 2009.
[38] M. Coleman, W. G. Hurley, and C. K. Lee. “An improved battery characterization method using a two-pulse load test,” IEEE Transactions on energy conversion, 23(2), pp.708-713, 2008.
[39] A. Eddahech, O. Briat, N. Bertrand, J.Y. Delétage and J.M. Vinassa, “Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks,” International Journal of Electrical Power & Energy Systems, pp. 487-494, 2012.
[40] M. Berecibar, I. Gandiaga, I. Villarreal, N. Omar, J. V. Mierlo and P. V. D.Bossche, “Critical review of state of health estimation methods of Li-ion batteries for real applications,” Renewable and Sustainable Energy Reviews, 56, pp.572-587, 2016.
[41] M. Gonzalez, M. A. Perez, J. C. Campo, J. F. Ferrero, “Accurate detection algorithm of battery full-capacity under fast-charge,” Instrumentation and Measurement Technology Conference, 1998. IMTC/98. Conference Proceedings. IEEE. Vol. 2. IEEE, 1998.
[42] 江炫樟(2011),「電力電子學(第三版)」,台北:全華圖書股份有限公司。
[43] 侯至豪,「降昇壓型電池電源模組串並聯平衡放電」,國立中山大學,碩士論文,民國102年6月。
[44] S. Luo, Z. Ye, L. R. Lin, and C. F. Lee, “A classification and evaluation of paralleling methods for power supply modules,” In Power Electronics Specialists Conference, 1999. PESC 99. 30th Annual IEEE, Vol. 2, pp. 901-908, 1999.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code