Responsive image
博碩士論文 etd-0805117-144420 詳細資訊
Title page for etd-0805117-144420
論文名稱
Title
連續漸變週期光柵的實現與應用
Continuously-chirped-grating formation and its applications
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
110
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-22
繳交日期
Date of Submission
2017-09-11
關鍵字
Keywords
勞式鏡干涉系統、波導模態共振頻譜儀、改良式全像干涉微影系統、自動化晶圓級光柵參數擷取系統、嚴格耦合波分析軟體
chirped guided-mode resonance (GMR), Lloyd’s interferometer, automatic grating mapping system
統計
Statistics
本論文已被瀏覽 5691 次,被下載 75
The thesis/dissertation has been browsed 5691 times, has been downloaded 75 times.
中文摘要
本論文將傳統勞式鏡干涉系統加以改良,成功製作出具高靈活性的連續性漸變週期光柵結構,藉由Matlab模擬軟體做公式計算,調整其系統參數,能夠在不同面積上製作出不同漸變週期的範圍,並將此漸變週期光柵應用在波導模態共振頻譜儀上,我們用嚴格耦合波分析軟體(RCWA)模擬出波導模態共振頻譜儀的光柵結構與光學特性並進行優化,以達成可見光頻譜儀的實現,其結構以玻璃作為基板,用改良式全像術干涉微影系統在玻璃表面做出漸變週期光柵結構,在用電子束蒸鍍機蒸鍍一層高折射率材料Ta2O5形成波導結構,在此光柵作為耦合器,當達成共振條件且相位匹配時,在特定波長即會出現高反射(>99%),透過不同週期所對應共振波長的位移,搭配模擬最佳波導光柵結構參數,我們成功達到在可見光波段(475~685 nm)有高反射(~90%)及窄頻寬(6 nm)的波導模態共振頻譜儀。
此外,本實驗室提出一光柵檢測系統─自動化晶圓級光柵參數擷取系統,此系統利用光柵繞射原理,接收週期性光柵的繞射光,利用繞射光角度及繞射光能量計算其週期與繞射效率,作為判斷光柵結構好壞的依據,其優勢在於相較於一般次波長光柵檢測系統SEM、AFM等,繞射系統具有精密、快速且大面積的檢測方式,並搭配Labview軟體達到自動化mapping的功能,在半導體產業上週期性光柵結構是不可或缺的,相對應的光柵檢測技術也日趨重要,而此系統已成功技轉至科技廠並在產線運作。
Abstract
In this thesis we successfully fabricate continuous gradient-period grating structures by employing a Lloyd’s interferometer equipped with a convex mirror. By tuning the incident angle to the Lloyd’s mirror, the range of grating periods and the illumination area can be flexibly defined. Therefore, we fabricate a chirped guided-mode resonance (GMR) filter by depositing a high-refractive-index Ta2O5 film atop gradient-period gratings for on-chip spectrometer applications. Optical transmission spectra of the proposed chirped GMR filter are simulated and optimized using rigorous coupled-wave analysis method to produce a narrowband filter response. As-realized chirped GMR filter is able to provide sharp transmission dips ( ∆λ = 5.48 nm) at resonant wavelengths. By gradually moving the chirped GMR filter, the resonant wavelength can be swept across the visible and near-infrared regions monotonically. We believe that the proposed GMR filter can serve as a dispersive device to realize a compact wavelength detection system. In this thesis we also propose and implement an automatic grating mapping system to characterize the grating uniformity. This system allows the precise determination of the grating periodicity by optical diffraction in a fast and reliable manner, so is a promising alternative to scanning emission microscope and atomic force microscope to characterize gratings. The system is designed for practical industrial usage and is capable of testing the gratings over a large sample area (up to 4 inch) in a few minutes. The automatic grating mapping system has been licensed and transferred to the production line of a local semiconductor laser company in Taiwan.
目次 Table of Contents
中文審定書 .................................................................................................................... i
英文審定書 ................................................................................................................... ii
致謝.............................................................................................................................. iii
中文摘要...................................................................................................................... iii
Abstract ......................................................................................................................... v
內容目錄....................................................................................................................... vi
圖目錄........................................................................................................................... ix
表目錄......................................................................................................................... xiv
第一章 緒論 1
1-1 前言 1
1-2 研究動機 2
1-3 文獻回顧 6
1-3.1 微影製程相關技術 6
1-3.2 波導模態共振濾波器 10
1-3.3 全像術與次波長光柵結構 13
1-3.4 高對比折射率光柵 16
第二章 波導模態共振原理 18
2-1 波導模態共振原理簡介 18
2-2 嚴格耦合波分析 20
2-2.1 嚴格耦合波分析理論 20
2-2.2 弱調制波導光柵 23
2-3 波導模態共振原理之特性 26
2-3.1 偏振選擇性 26
2-3.2 共振位置 27
2-3.3 共振線寬 28
第三章 光學繞射量測系統 31
3-1 常見光柵量測系統 32
3-1.1 電子束顯微鏡 32
3-1.2 原子力顯微鏡 33
3-1.3 光柵量測系統比較 34
3-2 光學繞射量測系統 35
3-3 系統量測數據分析 43
第四章 模擬、製程技術與系統架設 45
4-1 新型勞氏鏡全像系統 45
4-1.1 光場強度平坦化全像系統 45
4-1.2 漸變週期全像干涉系統 46
4-2 元件設計模擬 48
4-2.1 漸變週期光柵模擬 48
4-2.2 波導模態共振濾波器模擬 52
4-3 黃光微影製程 56
4-3.1 全像干涉微影製作流程 56
4-3.2 波導模態共振濾波器製作 59
第五章 實驗結果與量測分析 63
5-1 漸變週期光柵 63
5-2 繞射效率與週期量測 66
5-3 波導模態共振元件結果與討論 70
5-3.1 量測系統架構 70
5-3.2 波導模態共振濾波器量測結果 73
5-4 波導模態共振元件優化 78
5-4.1 薄光阻及低背景折射率 78
5-4.2 Ta2O5漸變厚度 80
5-4.3 元件優化後結果 82
第六章 結論與未來工作 85
6-1 結論 85
6-2 未來工作 86
6-2.1 優化漸變週期光柵 86
6-2.2 優化繞射系統 89
參考文獻 90
圖1- 1 稜鏡光譜儀架構示意圖 2
圖1- 2 光柵光譜儀架構示意圖 2
圖1- 3 固定週期與漸變週期光柵光譜儀運作原理 3
圖1- 4 光譜儀結合手機微型化 4
圖1- 5 勞氏鏡漸變週期架設 5
圖1- 6 雙光束漸變週期架設 5
圖1- 7 利用透鏡聚焦達到漸變週期光柵 5
圖1- 8 勞氏鏡系統架構圖 7
圖1- 9 高斯光場(左)與Lloyd’s Mirror樣品端光場能量分布(右) 8
圖1- 10 早期雙光束干涉架構 8
圖1- 11 (a)可調鏡面雙光束干涉系統與(b)製程光柵結果示意圖 9
圖1- 12 GRIN之波導模態共振濾波器 10
圖1- 13 漸變週期光柵(電子束直寫)之波導模態共振濾波器 11
圖1- 14 PMDS轉印漸變週期光柵製程 12
圖1- 15 漸變週期光柵(PMDS)之波導模態共振濾波器 12
圖1- 16 干涉微影示意圖 13
圖1- 17 介質光柵波導耦合共振示意圖 15
圖1- 18 高對比折射率反射器HCGs示意圖 16
圖1- 19 寬頻譜與高反射次波長光柵反射鏡 17
圖2- 1 波導模態共振原理 19
圖2- 2 波導光柵結構 19
圖2- 3 波導光柵結構 20
圖2- 4 波導本徵方程式曲線 26
圖2- 5 共振區間關係圖 27
圖2- 6 共振線寬對折射率調制關係圖 28
圖2- 7 共振線寬對填充因子關係圖 29
圖2- 8 共振線寬對模態侷限強度關係圖 30
圖3- 1 光柵繞射現象 31
圖3- 2 勞氏鏡干涉系統結合光柵繞射量測系統概念示意圖 31
圖3- 3 SEM內部結構示意圖 32
圖3- 4 AFM內部結構示意圖 33
圖3- 5 光柵量測系統(SEM、繞射系統、AFM) 34
圖3- 6 光學繞射量測系統示意圖 35
圖3- 7 光學繞射量測系統實際架構 36
圖3- 8 光柵繞射工作原理示意圖 36
圖3- 9 光學繞射量測系統Labview程式 38
圖3- 10 參數設定介面 39
圖3- 11 自動偵測單點週期與繞射效率介面 39
圖3- 12 自動化Mapping量測介面 40
圖3- 13 修正旋轉角度後帶入Labview演算法(i) 42
圖3- 14 修正旋轉角度後帶入Labview演算法(ii) 42
圖3- 15 修正旋轉角度後帶入Labview演算法(iii) 42
圖3- 16 不同週期光柵量測繞射系統、AFM與SEM的結果 43
圖3- 17 不同製程的光柵量測繞射系統結果 44
圖4- 1 平坦化之勞式鏡干涉系統架構示意圖 45
圖4- 2 新型勞式鏡干涉示意圖 46
圖4- 3 新型勞氏鏡漸變週期干涉系統架構 47
圖4- 4 新型勞氏鏡漸變週期L型載台 47
圖4- 5 漸變週期公式推導 48
圖4- 6 漸變週期L型夾角轉換公式推導 51
圖4- 7 不同曲率週期變化程度(a)凹面鏡(b)凸面鏡 51
圖4- 8 波導模態共振濾波器結構模擬示意圖 52
圖4- 9 光柵填充因子最佳化模擬 53
圖4- 10 Ta2O5厚度最佳化模擬 54
圖4- 11 背景折射率最佳化模擬 54
圖4- 12 波導模態共振光譜儀結構模擬(週期230~400 nm) 55
圖4- 13 波導模態共振光譜儀結構模擬(週期230~400 nm) 55
圖4- 14 全像術干涉微影製程流程圖 56
圖4- 15 製程使用機台 57
圖4- 16 駐波效應示意圖 58
圖4- 17 手電筒照射之布拉格繞射光 58
圖4- 18 漸變週期光柵不同位置的結構(SEM) 59
圖4- 19 加強抗反射後的漸變週期光柵(SEM) 59
圖4- 20 雙光束不同干涉角曝出之光柵結構(SEM) 60
圖4- 21 漸變週期製作在ITO玻璃基板上(SEM) 61
圖4- 22 玻璃正背面加上方抗反射層曝出的結果(SEM) 61
圖4- 23 波導光柵元件示意圖 62
圖5- 1 不同入射角與不同L型夾角的模擬、繞射系統與AFM量測比較 63
圖5- 2 不同入射角模擬與SEM量測週期對照 64
圖5- 3 不同入射角SEM量測圖 64
圖5- 4 不同入射角AFM量測圖 65
圖5- 5 RCWA與FDTD模擬軟體光阻厚度對填充係數比之繞射效率分布圖 66
圖5- 6 不同入射角與不同L型夾角深度與填充係數對應繞射效率分布圖 67
圖5- 7 Tracepro模擬(a)L型架構(b)平坦化光場打入 68
圖5- 8 Tracepro模擬光場強度對應繞射效率分佈(不同入射角) 68
圖5- 9 Tracepro模擬光場強度對應繞射效率分佈(不同L型夾角) 69
圖5- 10 GMR穿透頻譜白光量測系統 70
圖5- 11 白光照射(a)特定角度入射繞射光(c)正向入射反射光 71
圖5- 12 綠光雷射與氦氖雷射穿透頻譜量測系統 72
圖5- 13 (a)原始氦氖雷射頻譜(b)波導光柵元件穿透頻譜 72
圖5- 14 綠光雷射(532nm)(a)直接穿透(b)被光柵元件耦合現象 72
圖5- 15 量測波導模態元件穿透頻譜(週期:270~400 nm,Ta2O5厚度:110 nm) 73
圖5- 16 模擬波導模態元件穿透頻譜(週期:270~400 nm,Ta2O5厚度:110 nm) 74
圖5- 17 量測波導模態元件穿透頻譜(週期:310~410 nm,Ta2O5厚度:130 nm) 74
圖5- 18 模擬波導模態共振穿透頻譜(週期:270~400 nm,Ta2O5厚度:110 nm) 75
圖5- 19 光阻厚度對填充比之繞射效率分布圖 75
圖5- 20 光阻厚度對填充比之繞射效率分布圖 76
圖5- 21 穿透頻譜(週期:270~400 nm,Ta2O5厚度:110 nm) 76
圖5- 22 共振波長變化(週期:270~400 nm,Ta2O5厚度:110 nm) 77
圖5- 23 光阻厚度90 nm對應不同背景折射率之反射頻譜 78
圖5- 24 光阻厚度60 nm對應不同背景折射率之反射頻譜 78
圖5- 25 ITO薄膜對波模導膜態共振穿透頻譜的影響 79
圖5- 26 優化後波導模態共振濾波器元件結構示意圖 79
圖5- 27 不同Ta2O5厚度所對應的穿透頻譜(a)光柵週期300 nm(b)光柵週期800 nm 80
圖5- 28 漸變厚度載具與遮罩 80
圖5- 29 (a)以不旋轉加遮罩方式爭度結果(b)蒸鍍後矽晶圓 81
圖5- 30可見光波段週期漸變、固定Ta2O5厚度(110 nm)穿透頻譜 82
圖5- 31紅外光波段週期漸變、固定Ta2O5厚度(130 nm)穿透頻譜 83
圖5- 32漸變Ta2O5厚度(140~180 nm)、折射率(n=1)穿透頻譜 84
圖5- 33漸變Ta2O5厚度(140~180 nm)、折射率(n=1.8)穿透頻譜 84
圖6- 1 平坦化干涉光場(a)平面鏡(b)凸面鏡 86
圖6- 2 Tracepro模擬(a)高斯、(b)平坦和(c)反高斯光場 87
圖6- 3 曲率固定凸面鏡架構 88
圖6- 4 入射角20°,L型夾角90°週期變化趨勢 88
圖6- 5 曲率漸變凸面鏡架構 88
圖6- 6 優化版光學繞射量測系統示意圖 89
表1- 1光柵解析度(FWHM)趨勢 3
表3- 1光柵量測系統比較 34
參考文獻 References
[1] K. J. Lee, R. LaComb, B. Britton, M. Shokooh-Saremi, H. Silva, E. Donkor, Y. Ding, and R. Magnusson, “Silicon-layer guided-mode resonance polarizer with 40-nm bandwidth,” IEEE Photon. Technol. Lett., vol. 20, pp. 1857-1859, 2008.
[2] T. Kobayashi, Y. Kanamori, and K. Hane, “Surface laser emission from solid polymer dye in a guided mode resonant grating filter structure,” Appl. Phys. Lett., vol. 87, 2005.
[3] H. A. Lin, and C. S. Huang, “Linear Variable Filter Based on a Gradient Grating Period Guided-Mode Resonance Filter,” IEEE Photonics Technology Letters, vol. 28, no. 9, pp. 1042-1045,Feb. 2016.
[4] G. J. Triggs, Y. Wang, C. P. Reardon, M. Fischer, G. J. O. Evans, and T. F. Krauss, “Chirped guided-mode resonance biosensor,” Optica, vol. 4, no. 2, pp. 229-234, Oct. 2017.
[5] M. R. Saleem, R. Ali, S. Honkanen, and J. Turunen, “Bio-molecular sensors based on guided mode resonance filters,” IOP Conference Series: Materials Science and Engineering, vol. 146, no. 1, pp. 012030, 2016.
[6] http://lifeng.lamost.org/courses/astrotoday/CHAISSON/AT304/HTML/AT30401.HTM.
[7] http://oceanphotonics.com/product/oceanoptics_000024.html
[8] http://www.gzbiaoqi.com/shownews.asp?id=230
[9] http://www.upb.edu/es/contenido/espectrometro-para-telefonos-inteligentes.
[10] H. Kim, H. Jung, D.-H. Lee, K. B. Lee, and H. Jeon, “Period-chirped gratings fabricated by laser interference lithography with a concave Lloyd’s mirror,” Applied Optics, vol. 55, no. 2, pp. 354-359, Jan. 2016.
[11] A. Suzuki, and K. Tada, “Fabrication of chirped gratings on GaAs optical waveguides,” Thin Solid Films, vol. 72, no. 3, pp. 419-426, 1980.
[12] A. Katzir, A. Livanos, J. Shellan, and A. Yariv, “Chirped gratings in integrated optics,” IEEE Journal of Quantum Electronics, vol. 13, no. 4, pp. 296-304, 1977.
[13] K. Liu, H. Xu, H. Hu, Q. Gan, and A. N. Cartwright, “One-Step Fabrication of Graded Rainbow-Colored Holographic Photopolymer Reflection Gratings,” Advanced Materials, vol. 24, no. 12, pp. 1604-1609, 2012.
[14] Stephen Y. Chou, Peter R. Krauss and Preston J. Renstrom, “Imprint of sub-25 nm vias and trenches in polymers,” Appl. Phys. Lett., vol. 67, pp. 3114-3116, 1995.
[15] D. Gabor, “A new Microscopic Principle,” Nature, vol. 161, pp. 777-778, 1948.
[16] Ikjoo Byun and Joonwon Kim, “Cost-effective laser interference lithography using a 405nm AlInGaN semiconductor laser,” J. Micromech. Microeng. 20, pp. 055024, 2010.
[17] T. Ohira, T. Segawa, K. Nagai, S. Takahashi, K. Utaka, and M. Nakao, “InP 2D nano-structures fabricated by two-time laser holography,” IPRM. IEEE International Conference, Indium Phosphide and Related Materials, pp. 268-271, 2001.
[18] W. Mao, I. Wathuthanthri, and C.-H. Choi, “Tunable two-mirror laser interference lithography system for large-area nano-patterning,” Proc. SPIE, vol. 7970, pp. 79701K-79701K-8, 2011.
[19] G. Zheng, J. Cong, L. Xu, and W. Su, “Angle-insensitive and narrow band grating filter with a gradient-index layer,” Optics Letters, vol. 39, no. 20, pp. 5929-5932, Oct. 2014.
[20] https://image.hanspub.org.
[21] H. A. Lin, and C. S. Huang, “Linear Variable Filter Based on a Gradient Grating Period Guided-Mode Resonance Filter,” IEEE Photonics Technology Letters, vol. 28, no. 9, pp. 1042-1045, 2016.
[22] H.-A. Lin, H.-Y. Hsu, C.-W. Chang, and C.-S. Huang, “Compact spectrometer system based on a gradient grating period guided-mode resonance filter,” Optics Express, vol. 24, no. 10, pp. 10972-10979, May. 2016.
[23] H.-A. Lin, H.-Y. Hsu, and C.-S. Huang, "Compact Wavelength Detection System Based on a Gradient Grating Period Guided-Mode Resonance Filter," OSA Technical Digest (online),p.ATu1J.6,2016.
[24] C. Fang, B. Dai, Z. Li, A. Zahid, Q. Wang, B. Sheng, and D. Zhang, “Tunable guided-mode resonance filter with a gradient grating period fabricated by casting a stretched PDMS grating wedge,” Optics Letters, vol. 41, no. 22, pp. 5302-5305, Dec. 2016.
[25] D. W. Dobbs, I. Gershkovich, and B. T. Cunningham, “Fabrication of a graded-wavelength guided-mode resonance filter photonic crystal,” Applied Physics Letters, vol. 89, no. 12, pp. 123113, 2006.
[26] N. Ganesh, A. Xiang, N. B. Beltran, D. W. Dobbs, and B. T. Cunningham, “Compact wavelength detection system incorporating a guided-mode resonance filter,” Applied Physics Letters, vol. 90, no. 8, pp. 081103, 2007.
[27] L. Liu, H. A. Khan, J. Li, A. C. Hillier, and M. Lu, "Fabricating a Linear Variable Filter Using Nanoreplica Molding," OSA Technical Digest,p.SM2R.2,2016.
[28] D. S. Hobbs, B. D. McLeod, A. F. Kelsey, M. A. Leclerc, E. Sabatino III, and D. P. Resler, “Automated Interference Lithography Systems for Generation of Sub-Micron Feature Size Patterns,” SPIE Conference on Micromachine Technology for Diffractive and Holographic Optics, Proc. SPIE, vol. 3879, pp. 124-135, 1999.
[29] N.-D. Lai, W.-P. Liang, J.-H. Lin, C.-C. Hsu and C.-H. Lin, “Fabrication of two- and three-dimensional periodic structures by multi-exposure of two-beam interference technique,” Opt. Express, vol. 13, no. 23, pp. 9605-9611, 2005.
[30] R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag., vol. 4, pp. 396-402, 1902.
[31] S. S. Wang and R. Magnusson, “Theory and applications of guided-mode resonance filters,” Appl. Opt., vol. 32, no. 14, pp. 2606-2613, 1993.
[32] R. Magnusson and S. S. Wang, “New principle for optical filiters,” Appl. Phys. Lett., vol. 61, pp. 1022-1024, 1992.
[33] Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high contrast grating,” IEEE J. Sel. Topics Quantum Electron, vol. 19, pp. 1701311, 2013.
[34] V. Karagodsky and C. J. Chang-Hasnain, “Physics of near-wavelength high contrast gratings,” Opt. Express, vol. 20, pp. 10888-10895, 2012.
[35] James Ferrara, Weijian Yang, Li Zhu, Pengfei Qiao, and Connie J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express, vol. 23, no. 3, pp. 2515-2523, 2015.
[36] Robert Magnusson and Mehrdad Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express, vol. 16, no. 5, pp. 3456-3462, 2008.
[37] Robert Magnusson, Mehrdad Shokooh-Saremi, and Xin Wang, “Dispersion Engineering with Leaky-Mode Resonant Photonic Lattices,” Opt. Express, vol. 18, no. 1, pp. 108-116, 2009.
[38] Carlos F. R. Mateus, Student Member, IEEE, Michael C. Y. Huang, Student Member, IEEE, Yunfei Deng, Andrew R. Neureuther, Fellow, IEEE, and Connie J. Chang-Hasnain, Fellow, IEEE, “Ultrabroadband Mirror Using Low-Index Cladded Subwavelength Grating,” IEEE Photonics Technology Letters, vol. 16, no. 2, pp. 518-520, 2004.
[39] A. Hessel and A. Oliner, "A new theory of Wood's anomalies on optical gratings," Appl. Opt. vol. 4, pp. 1275-1297, 1965.
[40] 周柏仰, 波導共振模態濾波器的製作與模擬, 交通大學電子工程學系研究所學位碩士論文, 2010.
[41] 賴國偉, 波導模態共振之元件應用, 交通大學電子工程學系研究所學位碩士論文, 2011.
[42] 侯皓翔,整合液晶之可調模態共振光柵元件,中山大學光電工程學系研究所學位碩士論文,2016
[43] M. G. Moharam and T. K. Gaylord, "Rigorous coupled-wave analysis of planar-grating diffraction," J. Opt. Soc. Am., vol. 71, pp. 811-818, 1981.
[44] D. K. Cheng, Field and wave electromagnetic, Tsinghuna University Press, 1989.
[45] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A Opt. Image Sci. Vis., vol. 12, pp. 1068-1076, 1995.
[46] J. Inoue, T. Ogura, T. Kondo, K. Kintaka, K. Nishio, Y. Awatsuji, and S. Ura, “Reflection characteristics of guided-mode resonance filter combined with bottom mirror,” Opt. Lett. , vol. 39, pp. 1893-1896, 2014.
[47] S. S. Wang, R. Magnusson, and J. S. Bagby, “Guided-mode resonances in planar dielectric layer diffraction gratings,” J. Opt. Soc. Am. A, vol. 7, 1470, 1990.
[48] D. H. Shin, S. Tibuleac, T. A. Maldonado, and R. Magnusson, “Thin-film optical filters with diffractive elements and waveguides,” Opt. Eng., vol. 37, pp. 2634-2646, 1998.
[49] Naoya Uchida, “Calculation of diffraction efficiency in hologram gratings attenuated along the direction perpendicular to the grating vector,” J. Opt. Soc. Am., vol. 63, no. 3, pp. 280-287, 1973.
[50] M. G. Moharam and T. K. Gaylord, “Diffraction analysis of dielectric surface-relief gratings,” J. Opt. Soc. Am., vol. 72, no. 10, pp. 1385-1392, 1982.
[51] T. H. Yoon, C. I. Eom, M. S. Chung, and H. J. Kong, “Diffractometric methods for absolute measurement of diffraction-grating spacings,” Optics Letters, vol. 24, no. 2, pp. 107-109,Jan. 1999.
[52] V. I. Korotkov, S. A. Pul'kin, and L. F. Vitushkin, "High-precision measurement of the period of diffraction gratings using a laser interference diffractometer." pp. 72-72.1994.
[53] A. Bodere, D. Carpentier, A. Accard, and B. Fernier, “Grating fabrication and characterization method for wafers up to 2 in,” Materials Science and Engineering: B, vol. 28, no. 1, pp. 293-295, Dec. 1994.
[54] https://www.purdue.edu/ehps/rem/rs/sem.htm
[55] http://web1.knvs.tp.edu.tw/AFM/ch4.htm
[56] 張漢榮,利用勞氏鏡干涉架構搭配光場強度均勻器製作晶圓級奈米圖案,中山大學光電工程學系研究所學位碩士論文,2016
[57] M. G. Moharam, Eric B. Grann, and Drew A. Pommet, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A, vol. 12, no. 5, pp. 1068-1076, 1995.
[58] http://leo.diytrade.com
[59] https://www.samcointl.com
[60] http://opto-equipment.etrading.com.tw
[61] E. J. Carvalho, M. A. R. Alves, E. S. Braga, and L. Cescato, “SiO2 single layer for reduction of the standing wave effects in the interference lithography of deep photoresist structures on Si,” Microelectron. J., vol. 37, no. 11, pp. 1265-1270, 2006.
[62] L. Qian, D. Zhang, C. Tao, R. Hong, and S. Zhuang, “Tunable guided-mode resonant filter with wedged waveguide layer fabricated by masked ion beam etching,” Optics Letters, vol. 41, no. 5, pp. 982-985, March. 2016.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code