Responsive image
博碩士論文 etd-0805117-225257 詳細資訊
Title page for etd-0805117-225257
論文名稱
Title
不同馴養條件之厭氧生物處理對去除藥品及亞硝胺生成潛勢之影響
Removal of pharmaceuticals and nitrosamine formation potentials by anaerobic sludge with different incubation conditions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
101
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2017-07-03
繳交日期
Date of Submission
2017-09-05
關鍵字
Keywords
氧化石墨烯、亞硝胺類化合物、藥品及個人保健用品、馴養條件、批次處理、馴養、厭氧生物反應
Incubation, Anaerobic biological treatment, Nitrosamine, Graphene oxide, Batch treatment
統計
Statistics
本論文已被瀏覽 5660 次,被下載 24
The thesis/dissertation has been browsed 5660 times, has been downloaded 24 times.
中文摘要
在現今醫療科技進步且社會醫療福利完善的社會中,藥品及個人保健用品(Pharmaceuticals and personal care products,PPCPs)已經是達到隨處可得的地步,雖然改善了許多生活上以及疾病等的問題,卻衍生了一些新的問題。過去文獻指出PPCPs能藉由許多不同的途徑進入到環境之中,其中最主要的途徑普遍被認為是廢污水處理系統的放流水,雖然PPCPs可以藉由廢污水處理系統中的生物處理進行生物降解或生物吸附來去除,但受制於藥品的物化特性,使得生物處理對於某些藥品的去除能力有限;這些不易被生物處理程序去除的PPCPs一旦進入消毒程序可能會與消毒劑反應形成對人體有害的消毒副產物(Disinfection byproduct,DBPs),而其中具有二甲基官能基的PPCPs經過消毒程序後會反應生成具致癌性的亞硝胺類化合物(Nitrosamines)。
本研究選定三種常見之藥品包含作為抗癲癇藥物的卡馬西平(Carbamazepine)、屬於非類固醇消炎止痛藥(Non-Steroidal Anti-Inflammatory Drug,NSAID)的布洛芬(Ibuprofen)、以及具有鎮定及催眠效果的多西拉明(Doxylamine)作為研究對象,並透過(一)添加氧化石墨烯(Graphene oxide,GO)及藥品馴養污泥條件(命名為GSP)、(二)添加活性碳(Active carbon,AC)及藥品馴養污泥條件(命名為ASP)、(三)添加藥品馴養污泥條件(命名為SP)、(四)無額外添加馴養污泥條件(命名為S)四種馴養條件產出之厭氧污泥進行藥品去除批次實驗,以了解GO及AC的添加對於污泥去除藥品的能力影響,以及厭氧污泥是否經過藥品馴養對於去除藥品的能力上的差異;除了觀察藥品去除率以外,本研究亦希冀藉由量測亞硝胺生成潛勢來了解三種藥品經過不同馴養條件的厭氧污泥處理後放流水體中亞硝胺類化合物生成潛勢之變化影響,包含亞硝基二甲胺(N-Nitroso-dimethylamine,NDMA)、亞硝基甲基乙基胺(N-Nitrosomethylethylamine,NMEA)、亞硝基吡咯烷(N-Nitrosopyrrolidine,NPyr)、亞硝基二乙胺(N-Nitroso-diethylamine, NDEA)、亞硝基哌啶(N-Nitrosopiperidine,NPip)、亞硝基嗎啉(N-Nitrosomorpholine,NMor)、亞硝基二正丙胺(N-Nitroso-di-n-propylamine,NDPA)、亞硝基二正丁胺(N-Nitrosodi-n-butylamine ,NDBA);除了針對二級厭氧處理外,本研究也將藉由模擬一般廢污水廠消毒程序,藉由加氯(次氯酸)消毒前述不同馴養污泥處理後之放流水,分析三種藥品若經過實廠厭氧生物處理後消毒的亞硝胺類化合物生成量。
結果顯示,GO的添加能夠促進厭氧生物的成長,並且因本身能夠幫助氧化還原反應的電子傳遞,在去除布洛芬的能力有一定能力的幫助,但同時也促進了亞硝胺類化合物的生成。水中的卡馬西平衍生物及其他代謝物會進行反應合成卡馬西平,使卡馬西平殘留濃度高於原始添加濃度,但活性碳的存在能減緩這種現象發生。
在去除藥品的批次實驗結束後進行加氯(次氯酸)消毒及生成潛勢的亞硝胺生成量結果中,因本身水樣的複雜性較高,含有的亞硝胺前軀物種類較多,但由於生成潛勢單純為氯胺生成途徑,與加氯消毒同時所涉及到的氯-亞硝化反應和氯胺生成途徑不同,導致兩實驗的亞硝胺生成物種及生成量不同。生成潛勢之結果中,亞硝胺生成最高的物種以及實驗組合為GSP組污泥經六天接觸反應時間生物處理後NMor生成2434.94 ng/L,而加氯消毒實驗則是GSP經六天接觸反應時間生物處理後NDMA生成1437205.83 ng/L。
Abstract
It has been shown in early studies that pharmaceuticals and personal care products (PPCPs) are released into the environment by multiple pathways. Effluents of domestic wastewater treatment plants (WWTPs) is known as the major contributor. As biological treatment is one important step in domestic wastewater treatment, PPCP removals by biological treatment are typically limited. Formation of carcinogenic disinfection byproducts (DBPs) is another concern during treatment of pharmaceutical-containing wastewaters. In this study, four anaerobic sludge incubation conditions (anaerobic sludge with graphene oxide (GO) and PPCPs; anaerobic sludge with active carbon (AC) and PPCPs; anaerobic sludge with PPCPs; and anaerobic sludge only) were developed and the effects of different incubation conditions on the PPCP removals were investigated. PPCPs of concern included carbamazepine (CBZ), ibuprofen (IBF) and doxylamine (DOX). In these incubation experiments, the formation potentials of eight nitrosamines (Nitrosamine-FPs), which are carcinogenic DBPs of pharmaceuticals and included N-nitroso-dimethylamine (NDMA), N-nitrosomethylethylamine (NMEA), N-nitrosopyrrolidine (NPyr), N-nitroso-diethylamine (NDEA), N-nitrosopiperidine (NPip), N-nitrosomorpholine (NMor), N-nitroso-di-n-propylamine (NDPA), N-nitrosodi-n-butylamine (NDBA) were also analyzed. In the results, adding GO facilitated the growth of anaerobic sludge. GO helped the removal of IBF but also elevated the nitrosamine-FPs. The byproducts and metabolites of CBZ could react to form CBZ in the wastewaters. The presence of active carbon appeared to reduce the reaction rate. Because of the complexity in the compositions of wastewater, several nitrosamine concentrations and nitrosamine-FPs increased after chlorination. Different pathways were involved when three pharmaceuticals reacted during biological treatment or with chlorine during post-chlorination after biological treatment. Chloramination was the more important mechanism for nitrosamine-FPs variations during biological treatment, whereas chlorine-enhanced nitrosation and chloramination were both critical for nitrosamine concentrations during post-chlorination after biological treatment. This study provided insight into the effect of adding a novel GO material during anaerobic biological treatment on the removals of pharmaceuticals in wastewaters, which is an increasingly important concern for sustainable development of wastewater treatment technologies.
目次 Table of Contents
摘要 i
目錄 v
圖目錄 viii
表目錄 xi
第一章 前言 1
1.1 研究緣起 1
1.2 研究目的 3
1.3 研究架構 5
第二章 文獻回顧 7
2.1 藥品及個人保健用品 7
2.1.1 藥品及個人保健用品之流佈 8
2.1.2 藥品及個人保健用品之危害 9
2.1.3 藥品及個人保健用品之去除方法 10
2.2 厭氧生物處理 11
2.3 消毒副產物 13
2.4 亞硝胺類化合物 14
2.4.1亞硝胺類化合物生成機制 16
2.4.2 亞硝胺類化合物毒理反應 20
2.4.3 亞硝胺類化合物之法規規範 21
2.5 氧化石墨烯 22
第三章 實驗材料與方法 23
3.1 實驗藥品與儀器設備 23
3.1.1 實驗藥品 23
3.1.2 實驗設備與儀器 28
3.1.3 消毒劑次氯酸及一氯胺之配製 29
3.2 實驗研究 30
3.2.1 厭氧污泥馴養之SBR試驗 30
3.2.2 不同馴養方式產出之污泥測試去除藥品批次實驗 31
3.2.3 不同馴養方式產出之污泥測試去除生成潛勢之批次實驗 32
3.2.4 污泥批次實驗後加氯(次氯酸)消毒程之亞硝胺生成實驗 32
3.3 實驗樣品分析 33
3.3.1 藥品類樣品前處理 33
3.3.2 亞硝胺類化合物樣品前處理 34
3.3.3 藥品分析 34
3.3.4 亞硝胺類化合物分析 36
3.3.5 自由餘氯分析 38
3.4 實驗室品質保證與品質管理 39
3.4.1 儀器分析檢量線 39
3.4.2 方法偵測極限 39
第四章 結果與討論 40
4.1 以SBR進行不同條件厭氧污泥之馴養 40
4.1.1 MLSS及MLVSS之濃度變化 41
4.1.2 COD之去除效果 43
4.2 不同馴養條件產出之厭氧污泥進行模擬處理之批次實驗 45
4.2.1 MLSS及MLVSS濃度變化 45
4.2.2 氨氮、硝酸鹽氮、亞硝酸鹽氮濃度變化 49
4.2.3 水體中DOC、UV254以及SUVA值濃度變化 52
4.3 不同馴養條件產出污泥批次實驗之藥品去除能力 55
4.3.1 不同馴養條件產出污泥在各接觸時間批次實驗藥品去除能力 55
4.3.2各接觸反應時間下不同馴養條件產出污泥處理藥品之殘留量 58
4.4 批次實驗產出水樣之亞硝胺生成潛勢 63
4.4.1 各亞硝胺在不同接觸反應時間之生成潛勢濃度變化 63
4.4.2 各水力停留時間下亞硝胺類化合物生成潛勢之變化 66
4.5 批次實驗後加氯(次氯酸)消毒程序之亞硝胺生成濃度 71
4.5.1亞硝胺化合物經不同接觸反應時間之加氯消毒生成濃度變化 71
4.5.2 各接觸反應時間下加氯消毒程序亞硝胺類化合物生成量變化 75
4.6 結果總結 79
第五章 結論與建議 79
5.1 結論 80
5.2 建議 82
參考文獻 84
參考文獻 References
Abdel-Shafy, H. I., & Mansour, M. S. M. (2017). Treatment of Phatinaceutical Industrial Wastewater via Anaerobic/Aerobic System for Unrestricted Reuse. Journal of Scientific & Industrial Research, 76(2), 119-127.
Ahmed, F., & Rodrigues, D. F. (2013). Investigation of acute effects of graphene oxide on wastewater microbial community: A case study. Journal of Hazardous Materials, 256, 33-39. doi:10.1016/j.jhazmat.2013.03.064
Akhavan, O., & Ghaderi, E. (2010). Toxicity of Graphene and Graphene Oxide Nanowalls Against Bacteria. Acs Nano, 4(10), 5731-5736. doi:10.1021/nn101390x
Chan, Y. J., Chong, M. F., Law, C. L., & Hassell, D. G. (2009). A review on anaerobic-aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal, 155(1-2), 1-18. doi:10.1016/j.cej.2009.06.041
Choi, J. H., & Valentine, R. L. (2002). Formation of N-nitrosodimethylamine (NDMA) from reaction of monochloramine: a new disinfection by-product. Water Research, 36(4), 817-824. doi:10.1016/s0043-1354(01)00303-7
Choi, J. H., & Valentine, R. L. (2003). N-nitrosodimethylamine formation hy free-chlorine-enhanced nitrosation of dimethylamine. Environmental Science & Technology, 37(21), 4871-4876. doi:10.1021/es034020n
Crifasi, J. A., Bruder, M. F., Long, C. W., & Janssen, K. (2006). Performance evaluation of thermal desorption system (TDS) for detection of basic drugs in forensic samples by GC-MS. Journal of Analytical Toxicology, 30(8), 581-592.
Euerby, M. R., McKeown, A. P., & Petersson, P. (2003). Chromatographic classification and comparison of commercially available perfluorinated stationary phases for reversed-phase liquid chromatography using Principal Component Analysis. Journal of Separation Science, 26(3-4), 295-306. doi:10.1002/jssc.200390035
Graves, C. G., Matanoski, G. M., & Tardiff, R. G. (2001). Weight of evidence for an association between adverse reproductive and developmental effects and exposure to disinfection by-products: A critical review. Regulatory Toxicology and Pharmacology, 34(2), 103-124. doi:10.1006/rtph.2001.1494
Ho, J. H., & Sung, S. W. (2010). Methanogenic activities in anaerobic membrane bioreactors (AnMBR) treating synthetic municipal wastewater. Bioresource Technology, 101(7), 2191-2196. doi:10.1016/j.biortech.2009.11.042
Jelic, A., Rodriguez-Mozaz, S., Barcelo, D., & Gutierrez, O. (2015). Impact of in-sewer transformation on 43 pharmaceuticals in a pressurized sewer under anaerobic conditions. Water Research, 68, 98-108. doi:10.1016/j.watres.2014.09.033
Krasner, S. W., Mitch, W. A., McCurry, D. L., Hanigan, D., & Westerhoff, P. (2013). Formation, precursors, control, and occurrence of nitrosamines in drinking water: A review. Water Research, 47(13), 4433-4450. doi:10.1016/j.watres.2013.04.050
Law, V., Knox, C., Djoumbou, Y., Jewison, T., Guo, A. C., Liu, Y. F., . . . Wishart, D. S. (2014). DrugBank 4.0: shedding new light on drug metabolism. Nucleic Acids Research, 42(D1), D1091-D1097. doi:10.1093/nar/gkt1068
Liu, J. L., & Wong, M. H. (2013). Pharmaceuticals and personal care products (PPCPs): A review on environmental contamination in China. Environment International, 59, 208-224. doi:10.1016/j.envint.2013.06.012
Liu, S. B., Zeng, T. H., Hofmann, M., Burcombe, E., Wei, J., Jiang, R. R., . . . Chen, Y. (2011). Antibacterial Activity of Graphite, Graphite Oxide, Graphene Oxide, and Reduced Graphene Oxide: Membrane and Oxidative Stress. Acs Nano, 5(9), 6971-6980. doi:10.1021/nn202451x
Liu, Y. S., Ying, G. G., Shareef, A., & Kookana, R. S. (2011). Biodegradation of three selected benzotriazoles under aerobic and anaerobic conditions. Water Research, 45(16), 5005-5014. doi:10.1016/j.watres.2011.07.001
Mitch, W. A., & Sedlak, D. L. (2002). Formation of N-nitrosodimethylamine (NDMA) from dimethylamine during chlorination. Environmental Science & Technology, 36(4), 588-595. doi:10.1021/es010684q
Monteiro, S. C., & Boxall, A. B. A. (2010). Occurrence and Fate of Human Pharmaceuticals in the Environment. In D. M. Whitacre (Ed.), Reviews of Environmental Contamination and Toxicology, Vol 202 (Vol. 202, pp. 53-154). New York: Springer.
Padhye, L. P., Hertzberg, B., Yushin, G., & Huang, C. H. (2011). N-Nitrosamines Formation from Secondary Amines by Nitrogen Fixation on the Surface of Activated Carbon. Environmental Science & Technology, 45(19), 8368-8376. doi:10.1021/es201696e
Radjenovic, J., Petrovic, M., & Barcelo, D. (2009). Fate and distribution of pharmaceuticals in wastewater and sewage sludge of the conventional activated sludge (CAS) and advanced membrane bioreactor (MBR) treatment. Water Research, 43(3), 831-841. doi:10.1016/j.watres.2008.11.043
Rittmann, B. E., & McCarty, P. L. (2001). Environmental biotechnology: principles and applications: McGraw-Hill.
Rodriguez-Narvaez, O. M., Peralta-Hernandez, J. M., Goonetilleke, A., & Bandala, E. R. (2017). Treatment technologies for emerging contaminants in water: A review. Chemical Engineering Journal, 323, 361-380. doi:10.1016/j.cej.2017.04.106
Sadiq, R., & Rodriguez, M. J. (2004). Disinfection by-products (DBPs) in drinking water and predictive models for their occurrence: a review. Science of the Total Environment, 321(1-3), 21-46. doi:10.1016/j.scitotenv.2003.05.001
Scheytt, T. J., Mersmann, P., & Heberer, T. (2006). Mobility of pharmaceuticals carbamazepine, diclofenac, ibuprofen, and propyphenazone in miscible-displacement experiments. Journal of Contaminant Hydrology, 83(1-2), 53-69. doi:10.1016/j.jconhyd.2005.11.002
Schreiber, I. M., & Mitch, W. A. (2006). Occurrence and fate of nitrosamines and nitrosamine precursors in wastewater-impacted surface waters using boron as a conservative tracer. Environmental Science & Technology, 40(10), 3203-3210. doi:10.1021/es052078r
Shah, A. D., & Mitch, W. A. (2012). Halonitroalkanes, Halonitriles, Haloamides, and N-Nitrosamines: A Critical Review of Nitrogenous Disinfection Byproduct Formation Pathways. Environmental Science & Technology, 46(1), 119-131. doi:10.1021/es203312s
Shen, R., & Andrews, S. A. (2011). Demonstration of 20 pharmaceuticals and personal care products (PPCPs) as nitrosamine precursors during chloramine disinfection. Water Research, 45(2), 944-952. doi:10.1016/j.watres.2010.09.036
Subedi, B., Balakrishna, K., Joshua, D. I., & Kannan, K. (2017). Mass loading and removal of pharmaceuticals and personal care products including psychoactives, antihypertensives, and antibiotics in two sewage treatment plants in southern India. Chemosphere, 167, 429-437. doi:10.1016/j.chemosphere.2016.10.026
Tezel, U., Padhye, L. P., Huang, C. H., & Pavlostathis, S. G. (2011). Biotransformation of Nitrosamines and Precursor Secondary Amines under Methanogenic Conditions. Environmental Science & Technology, 45(19), 8290-8297. doi:10.1021/es2005557
Toral-Sanchez, E., Rangel-Mendez, J., Valdes, J. A. A., Aguilar, C. N., & Cervantes, F. J. (2017). Tailoring partially reduced graphene oxide as redox mediator for enhanced biotransformation of iopromide under methanogenic and sulfate-reducing conditions. Bioresource Technology, 223, 269-276. doi:10.1016/j.biortech.2016.10.062
Vieno, N., Tuhkanen, T., & Kronberg, L. (2007). Elimination of pharmaceuticals in sewage treatment plants in Finland. Water Research, 41(5), 1001-1012. doi:10.1016/j.watres.2006.12.017
Wijekoon, K. C., Fujioka, T., McDonald, J. A., Khan, S. J., Hai, F. I., Price, W. E., & Nghiem, L. D. (2013). Removal of N-nitrosamines by an aerobic membrane bioreactor. Bioresource Technology, 141, 41-45. doi:10.1016/j.biortech.2013.01.057
Yang, K., Li, Y. J., Tan, X. F., Peng, R., & Liu, Z. (2013). Behavior and Toxicity of Graphene and Its Functionalized Derivatives in Biological Systems. Small, 9(9-10), 1492-1503. doi:10.1002/smll.201201417
Yang, Y., Ok, Y. S., Kim, K. H., Kwon, E. E., & Tsang, Y. F. (2017). Occurrences and removal of pharmaceuticals and personal care products (PPCPs) in drinking water and water/sewage treatment plants: A review. Science of the Total Environment, 596, 303-320. doi:10.1016/j.scitotenv.2017.04.102
王雅虹 (2016)藥品及個人保健用品經加氯氧化程序生成新興消毒副產物亞硝胺之研究
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code