Responsive image
博碩士論文 etd-0805119-120341 詳細資訊
Title page for etd-0805119-120341
論文名稱
Title
由時變兆赫波光譜研究GaSe(1-x)S(x)晶體的光學性質
Study of the properties of GaSe(1-x)S(x) crystals using Terahertz time-domain spectroscopy
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
65
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-07-31
繳交日期
Date of Submission
2019-09-05
關鍵字
Keywords
兆赫波時間解析系統、載子遷移率、載子濃度、導電率、GaSe1-xSx晶體、摻雜硫、吸收率
conductivity, sulfur doping, absorption, Terahertz time-domain spectroscopy, GaSe1-xSx crystals, mobility, carrier concentration
統計
Statistics
本論文已被瀏覽 5621 次,被下載 0
The thesis/dissertation has been browsed 5621 times, has been downloaded 0 times.
中文摘要
在本論文中,中使用兆赫波時間解析系統(THz-TDS)獲得太赫茲範圍內的GaSe1-xSx樣品的光學和電學性質。 結果表明,隨著硫含量的增加,GaSe1-xSx樣品的性質接近GaS的性質。 這種行為與由於硫摻雜導致的GaSe1-xSx樣品的堆疊類型轉變有關。 所有樣品的獲得折射率範圍為3.0至3.3。 隨著硫含量的增加,GaSe1-xSx樣品的吸收和電導率增加。 從Drude模型擬合中,獲得的載流子濃度範圍為0.7×1015cm-3至2.3×1015cm-3,隨著硫含量的增加而減少,而獲得的遷移率範圍為81cm2 /V⸱s至233cm2 /V⸱s,隨著硫含量的增加而增加。
Abstract
The optical and electrical properties of GaSe1-xSx samples in the terahertz range were obtained using terahertz time-domain spectroscopy (THz-TDS). Results showed that the properties of the GaSe1-xSx samples approach that of GaS as the amount of sulfur increases. This behavior is linked to the stacking type transition of the GaSe1-xSx samples due to sulfur doping. The obtained index of refraction ranges from 3.0 to 3.3 for all samples. The absorption and conductivity of the GaSe1-xSx samples increases as the sulfur content increases. From the Drude model fitting, the obtained carrier concentration ranges from 0.7x1015 cm-3 to 2.3x1015 cm-3, decreasing as the amount of sulfur increases, while the obtained mobility ranges from 81 cm2/V⸱s to 233 cm2/V⸱s, increasing as the amount of sulfur increases.
目次 Table of Contents
論文審定書 i
論文授權書 ii
Acknowledgements iii
摘要 iv
Abstract v
List of Figures vii
List of Tables ix
Chapter 1 Introduction 1
1.1 Background of the study 1
1.2 THz radiation 2
1.3 Generation of THz radiation 4
1.4 Developments in THz research 6
1.5 Sulfur doping in GaSe 8
Chapter 2 Generation of terahertz pulses from a biased photoconductive antenna 18
2.1 The physics of the PC antenna 18
2.2 Detection of THz radiation generated from a biased PC antenna 21
Chapter 3 Terahertz time-domain spectroscopy experimental set-up and calculation 25
3.1 Experimental Set-up 25
3.2 Theoretical background 27
Chapter 4 Sample information and Data analysis 31
4.1 Sample information 31
4.2 Data analysis 33
Chapter 5 Conclusion 50
References 52
參考文獻 References
1. C.H. Ho, C.C. Wu, and Z.H. Cheng, “Crystal structure and electronic structure of GaSexS1-x series layered solids”, Journal of Crystal Growth 279, 321 (2005).
2. M. Rahaman, R. D. Rodriguez, M. Monecke, S. A. Lopez-Rivera and D. R. T. Zahn, “GaSe oxidation in air: from bulk to monolayers”, Semiconductor Science and Technology 32, 10 (2017).
3. N. B. Singh, C. H. Su, B. Arnold, F. S. Choa, S. Sova, and C. Cooper, “Multifunctional 2D-Materials: Gallium Selenide”, Materials Today: Proceedings 4-4E, 5471 (2017).
4. Y. B. Ni, H. X. Wu, C. B. Huang, M. S. Mao, Z. Y. Wang, and X. D. Cheng, “Growth and quality of gallium selenide (GaSe) crystals”, Journal of Crystal Growth 381, 10 (2013).
5. N. C. Fernelius, “Properties of gallium selenide single crystal”, Progress in Crystal Growth and Characterization of Materials 28, 275 (1994).
6. N. B. Singh, D. R. Suhre, V. Balakrishna, M. Marable, R. Meyer, N. Fernelius, F. K. Hopkins, and D. Zelmon, “Far infrared conversion materials: gallium selenide for far infrared conversion applications”, Progress in Crystal Growth and Charaterization of Materials, 47 (1998).
7. O. V. Voevodin, A. N. Morozov, S. Y. Sarkisov, S. A. Bereznaya, Z. V. Korotchenko and D. E. Dikov, “Properties of gallium selenide doped with sulfur from melt and from gas phase” Proceedings. The 9th Russian-Korean International Symposium on Science and Technology, 2005. KORUS 2005, 551 (2005).
8. E. D. Palik, “Handbook of Optical Constants of Solids”, Academic 3 (1998).
9. V. G. Dmitriev, G. G. Gurzadyan, and D. N. Nikogosyan, “Handbook of Nonlinear Optical Crystals”, Springer, 166 (1997).
10. S. A. Bereznaya, et al., “Broadband and narrowband terahertz generation and detection in GaSe1− xSx crystals”, J. Opt. 19, 115503 (2017).
11. M. M. Nazarov, S. Y. Sarkisov, A. P. Shkurinov and O. P. Tolbanov, “GaSe1−xSx and GaSe1−xTex thick crystals for broadband terahertz pulses generation”, Appl. Phys. Lett. 99, 081105 (2011).
12. W. Shi, Y. J. Ding, N. Fernelius, K. Vodopyanov, “Efficient, tunable, and coherent 0.18-5.27-THz source based on GaSe crystal”, Optics Lett. 27, No. 16, 1454 (2002).
13. C. W. Chen, T. T. Tang, S. H. Lin, J. Y. Huang, C. S. Chang, P. K. Chung, S. T. Yen, and C. L. Pan, “Optical properties and potential applications of ε-GaSe at terahertz frequencies”, J. Opt. Soc. Am. B 26, No. 9, (2009).
14. K. Liu, J. Xu, and X. C. Zhang, “GaSe crystals for broadband terahertz wave detection”, Appl. Phys. Lett. 85, 863 (2004).
15. V. G. Dmitriev, G. G. Gurzadyan, D. N. Nikogosyan, Handbook for Nonlinear Optical Crystals 3, Springer (1997).
16. K. A. Kokh, J. F. Molloy, M. Naftaly, Y. M. Andreev, V. A. Svetlichnyi, G. V. Lanskii, I. N. Lapin, T. I. Izaak, and A. E. Kokh, “Growth and optical properties of solid solution crystals GaSe1-xSx”, Materials Chemistry and Physics 154 (2015).
17. Y. M. Andreev, V. V. Atuchin, G. V. Lanskii, A. N. Morozov, L. D. Pokrovsky, S. Y. Sarkisov, and O. V. Voevodina, “Growth, real structure and applications of GaSe1−xSx crystals”, Materials Science and Engineering B 128, 205–21 (2006).
18. J. Guo, J. J. Xie, D. J. Li, G. L. Yang, F. Chen, C. R. Wang, L. M. Zhang, Y. M. Andreev, K. A. Kokh, G. V. Lanskii and V. A. Svetlichnyi, “Doped GaSe crystals for laser frequency conversion”, Light: Science & Applications 4, e362 (2015).
19. J. F. Molloy, M. Naftaly, Y. Andreev, K. Kokh, G. Lanskii, and V. Svetlichnyi, “Absorption anisotropy in sulfur doped gallium selenide crystals studied by THz-TDS”, Optical Materials Express 4, No. 11, 2451 (2014)
20. M. Naftaly, J. F. Molloy, Y. M. Andreev, K. A. Kokh, G. V. Lanskii, and V. A. Svetlichnyi, “Dispersion properties of sulfur doped gallium selenide crystals studied by THz TDS”, Optics Express 23, No. 25, 3282014 (2015).
21. C.C. Wu, C.H. Ho, W.T. Shen, Z.H. Cheng, Y.S. Huang, K.K. Tiong, “Optical properties of GaSexS1-x series layered semiconductors grown by vertical Bridgman method”, Materials Chemistry and Physics 88, 313 (2004).
22. Ho, C. H., and K. W. Huang, “Visible luminescence and structural property of GaSexS1-x (0≤ x≤ 1) series layered crystals”, Sol. State. Commun. 136, 591 (2005).
23. B. L. Yu, F. Zeng, V. Kartazayev, and R. R. Alfano, “Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal”, Applied Physics Letters 87, 182104 (2005).
24. H. Guo, X. Zhang, W. Liu, A. Yong, and S. Tang, “Terahertz carrier dynamics and dielectric properties of GaN epilayers with different carrier concentrations”, Journal of Applied Physics 106, 063104 (2009).
25. W. Moore, J. Freitas Jr, and R. Molnar, “Zeeman spectroscopy of shallow donors in GaN”, Physical Review B 56, 12073 (1997).
26. M. Tonouchi, “Cutting-edge terahertz technology”, Nature Photonics 1, 97 (2007).
27. Y.S. Lee, “Principles of Terahertz Science and Technology”, Proceedings of the International Conference, Mainz, Germany 170, Springer (2009).
28. H. C. B. Skjeie, “Terahertz Time-Domain Spectroscopy”, Norwegian University of Science and Technology (2012).
29. S. L. Dexheimer, “Terahertz spectroscopy: principles and applications”, Chemical Rubber Company Press (2007).
30. X.C. Zhang and J. Xu, “Introduction to THz wave photonics”, Springer (2010).
31. L. Duvillaret, F. Garet, and J.L. Coutaz, “A reliable method for extraction of material parameters in terahertz time-domain spectroscopy”, Journal of Selected Topics in Quantum Electronics, Institute Electrical and Electronics Engineerings 2, 739 (1996).
32. W. Zhang, A. K. Azad, and D. Grischkowsky, “Terahertz studies of carrier dynamics and dielectric response of n-type, freestanding epitaxial GaN,”, Applied Physics Letters 82, 2841 (2003).
33. T. Nagashima, K. Takata, S. Nashima, H. Harima, and M. Hangyo, “Measurement of electrical properties of gan thin films using terahertz-time domain spectroscopy”, Japanese Journal of Applied Physics 44, 926 (2005).
34. Z. Zhou, A. T. Chen, L. S. Feng, X. J. Xin, and C. X. Yu, “Terahertz generation and detection setup based on pump‐probe scheme”, Microwave and Optical Technology Letters 51, 1617 (2009).
35. S. Rihani, R. Faulks, H. E. Beere, I. Farrer, M. Evans, D. A. Ritchie, and M. Pepper, “Enhanced terahertz emission from a multilayered low temperature grown GaAs structure”, Applied Physics Letters 96, 091101 (2010).
36. M. Currie, F. Quaranta, A. Cola, E. M. Gallo, and B. Nabet, “Heteroepitaxy of Layered Semiconductor GaSe on a GaAs(111)B Surface”, Applied Physics Letters 99, 203502 (2011).
37. T. Sha, W. Li, S. Chen, K. Jiang, J. Zhu, Z. Hu, Z. Huang, J. Chu, K. Kokh, and Y. Andreev, “Effects of S-doping on the electronic transition, band gap, and optical absorption of GaSe1-xSx single crystals”, Journal of Alloys and Compounds 721, 164 (2017).
38. S. Yang, B. Lin, C. Kuo, H. Hsu, W.-R. Liu, M. Eriksson, et al., “Improvement of Crystalline and Photoluminescence of Atomic Layer Deposited m-Plane ZnO Epitaxial Films by Annealing Treatment”, Crystal Growth & Design 12, 4745 (2012).
39. J. Lloyd-Hughes, & T. I. Jeon, “A Review of the Terahertz Conductivity of Bulk and Nano-Materials”, J Infrared Milli Terahz Waves 33, 871 (2012).
40. K. Ueno, H. Abe, K. Saiki, and A. Koma, “Heteroepitaxy of Layered Semiconductor GaSe on a GaAs(111)B Surface”, Japanese Journal of Applied Physics 30, 8A, 1347 (1991).
41. B. L. Yu, F. Zeng, V. Kartazayev, and R. R. Alfano, “Terahertz studies of the dielectric response and second-order phonons in a GaSe crystal”, Applied Physics Letters 87, 182104 (2005).
42. E. Mashkovich, A. I. Shugurov, S. Ozawa, E. Estacio, M. Tani, M. Bakunov, Terahertz Science and Technology, “Noncollinear Electro-Optic Sampling of Terahertz Waves in a Thick GaAs Crystal”, IEEE Transactions 5, 732 (2015).
43. Y. Yanchev and S. K. Evtimova, “Electron mobility in heavily doped and compensated gallium arsenide due to scattering by potential fluctuations”, J. Phys. C: Solid State Phys. 18, L377 (1985).
44. W. D. Kingery, H. K. Bowen, D. R. Uhlmann, “Introduction to Ceramics (2nd Edition)”, Wiley and Sons, (1976)
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 18.223.205.61
論文開放下載的時間是 校外不公開

Your IP address is 18.223.205.61
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 永不公開 not available

QR Code