Responsive image
博碩士論文 etd-0805119-221933 詳細資訊
Title page for etd-0805119-221933
論文名稱
Title
併網與孤島調變控制之三階層T型逆變器
Modulation-controlled Grid-connected and Islanded Three-Level T-type Inverter
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
166
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2019-08-15
繳交日期
Date of Submission
2019-09-05
關鍵字
Keywords
最大公率點追蹤演算法、太陽能供應三階 T-type 逆變器、未平衡中性點電壓、電池電量狀態、太陽能與電池供應三階 T-type 逆變器、電池供應三階 T-type 逆變器、調變控制
Modulation control, MPPT algorithm, PV-battery supplied Three-level TType inverter, Battery supplied Three-level TType inverter, PV supplied Three-level TType inverter, SOC, Unbalance neutral-point voltage
統計
Statistics
本論文已被瀏覽 5639 次,被下載 0
The thesis/dissertation has been browsed 5639 times, has been downloaded 0 times.
中文摘要
隨著大量地使用更環保的能源,使用先進電力電子轉換技術之分佈式發 電機組在電力系統中逐漸增加,在眾多再生能源中,太陽能相對吸引了許多關注,由於可用性和可預測性的幾個獨特特徵(相較其它能源)。為了提高效率,太陽能系統建議操作在最大功率點上,此外,由於可再生能源在能源可用性上固有的特性,能量儲存已廣泛的使用於電力系統。在這方面,本文考慮了三種用於電力系統的電力轉換系統架構,為了實現論文的目的,故系統架構採用三階 T 型逆變器。在第一種系統結構中,提出了一種自適應控制的非連續載波脈波寬度調變(DPWM),該控制可在具有兩串並聯連接的 PV 電池板的三階層箝位逆變器中實現。所提出的調變是基於所謂的電路級解耦概念而開發的。即使在直流端不平衡情況下,所提出的方法也能夠提供平衡線電壓。由於在非對稱的最大功率點電壓追蹤(MPPT)情況下的不相等的直流電壓是由零序電壓適當的注入共模電壓來控制的,此時總直流電壓是根據每個 MPPT 算法產生的電壓指令來調節的,因此,每個太陽能電池串能夠基於其自身的 MPPT 操作,在逆變器輸出電流處具有可以忽略的低次諧波失真。實驗證明,該方法能夠將電流的總諧波失真(THD)抑制近 60%。在第二種系統結構中,提出了基於調變控制來整合兩個串聯電池組,中性點電流可以被控制,所以逆變器之總功率產生(或吸收)可以被分配給兩個電池,依據它們的充電狀態 SOC,並考慮了中性點電壓,以便正確地執行功率分配。所提出的方法是獨一無二的。在第三種系統結構中,研究了光伏系統和電 池的整合。為了獲得最高效率,太陽能陣列操作建立在它的最大功率點上,那時電池操作在不匹配的功率在電網與太陽能電池系統之間。當通過 PV 額外發電(與電網需求電力相比)時,該電力供給電池;當 PV 的逆差發電(與電網需求電力相比)時,電池支持 PV 以抵消逆差電力並滿足電網的需求電力。在 PV 和電池之間進行適當的協作以響應電網,DPWM 得到適當控制。通過在併網和孤島系統中的模擬研究和實驗測試來評估所有提出的控制。
Abstract
With greedy using of greener energies, distributed generation units using advanced technology of power conversion are increasing in power networks. Among lots of renewable energies, solar energy has comparatively attracted much attention due to several exclusive features in availability and predictability (in comparison with other sources). In sake of higher efficiency, photovoltaic (PV) systems are recommended to be operated in the maximum of energy harvesting at the moment. In addition, due to the inherent characteristic of renewable energies in terms of energy availability, energy storages have been extensively using in power network. In this regard, three topologies of power conversion systems to be used in power system have considered in this dissertation. To approach the aims of the dissertation, modulation-controlled three-level T-Type inverter is used in the topologies. At the first topology, an adaptive control of Discontineous Pulsewidth Modulation (DPWM) implementable in clamped-three-level inverters with two strings of PV panels in cascaded connection is proposed. The
proposed modulation is developed based on the so-called circuit-level decoupling concept. The proposed method is able to provide balance line voltage even under unbalance dc links. The unequal dc voltages appeared due to asymmetric Maximum point of Power Trackings (MPPT)s are controlled by proper injection of zero-sequence voltage to the common mode voltage while total dc voltage is regulated based on the voltage commands generated by the MPPT algorithm of each string. Thus, each PV string is able to be operated based on its own MPPT with negligible amount of loworder harmonic distortion at the inverter output current. It was proved that the proposed method is able to suppress Total Harmonic Distortion (THD) of current by almost 60 percent. At the second topology, a modulation based control is proposed to integrate v two series-connected battery banks. Neutral-point current is controlled so that total power generation (or absorption) by inverter is shared between batteries based on their State of Charges (SOCs). Neutral-point voltage has also taken into consideration so that
the power sharing carries out properly. The proposed method is unique of its kind. At the third topology, integration of PV system and battery is investigated. To attain the highest efficiency, the PV array operates based on its MPPT algorithm when the battery operates based on the mismatching power between grid’s demand power and PV’s power at the moment. When extra power generation by PV (in comparison with the grid-demand power), this power feeds to the battery; when deficit power generation by PV (in comparison with the grid-demand power), the battery supports PV to counteract the deficit power and meet the grid’s demand power. Making proper collaboration between the PV and the battery to respond grid, DPWM is properly controlled. All of the proposed controls are evaluated by simulation study and experimental tests in gridconnected and islanded systems.
目次 Table of Contents
Certification Form ................................ ................................ ................................ ........... i
摘要 ................................ ................................ ................................ ................................ ii
Abstract ................................ ................................ ................................ ......................... iv
Contents ................................ ................................ ................................ ........................ vi
List of Figures ................................ ................................ ................................ ............... ix
List of Tables ................................ ................................ ................................ ............... xiii
Chapter 1 Introduction ................................ ................................ ............................ 1
1.1 Future Power Systems................................ ................................ ........................ 1
1.2 Inverters ................................ ................................ ................................ ............. 3
1.3 Modulation ................................ ................................ ................................ ......... 5
1.3.1 Direct Digital Technique ................................ ................................ .................... 5
1.3.2 Triangle Intersection Technique ................................ ................................ ......... 8
1.4 Neutral-point Voltage Analysis ................................ ................................ ........ 12
1.5 Common Mode Voltage Injection ................................ ................................ .... 14
1.5.1 SPWM-CMV Injection ................................ ................................ .................... 14
1.5.2 SVM-CMV Injection ................................ ................................ ....................... 15
1.5.3 THIPWM Injection ................................ ................................ .......................... 15
1.5.4 DPWM-III Injection................................ ................................ ......................... 17
1.5.5 DPWMMAX Injection................................ ................................ ..................... 17
1.5.6 DPWMMIN Injection ................................ ................................ ...................... 18
1.5.6 GDPWM Injection ................................ ................................ ........................... 19
1.6 Discussion about CMV Injection Methods ................................ ...................... 19
Chapter 2 Literature Review................................ ................................ ................. 22
2.1 PV Inverter ................................ ................................ ................................ ....... 22
2.2 Battery Inverter ................................ ................................ ................................ 25
2.3 PV-battery Inverter ................................ ................................ ........................... 29
Chapter 3 Proposed Method ................................ ................................ ................. 33
3.1 PV Inverter ................................ ................................ ................................ ....... 33
3.1.1 Circuit-Level Decoupling Concept ................................ ................................ .. 33
3.1.2 Modulation ion Asymmetric MPPTs ................................ ............................... 38
3.1.2.1 Total Voltage Control ................................ ................................ ....................... 38
3.1.2.2 Current Control ................................ ................................ ................................ 39
3.1.2.3 Neutral Point Current Control ................................ ................................ .......... 40
3.1.3 Neutral-point Current Analysis ................................ ................................ ........ 42
3.1.4 Limitation of Proposed Control ................................ ................................ ....... 47
3.2 Battery Inverter ................................ ................................ ................................ 50
3.2.1 Inverter Power Control ................................ ................................ .................... 52
3.2.2 Neutral-point Current Control................................ ................................ .......... 53
3.2.3 Dealing Unbalance Condition ................................ ................................ .......... 54
3.2.4 Discussion ................................ ................................ ................................ ........ 55
3.2.5 Neutral-point Analysis and Limitation................................ ............................. 57
3.3 PV-battery Inverter ................................ ................................ ........................... 60
3.3.1 PV power Control ................................ ................................ ............................ 62
3.3.2 Battery Power Control ................................ ................................ ..................... 62
Chapter 4 Simulation Study ................................ ................................ .................. 64
4.1 PV Inverter ................................ ................................ ................................ ....... 64
4.2 Battery Inverter ................................ ................................ ................................ 68
4.2.1 Islanded System ................................ ................................ ............................... 71
4.2.2 Grid-connected System ................................ ................................ .................... 74
4.3 PV-battery Inverter ................................ ................................ ........................... 78
4.3.1 Part A ................................ ................................ ................................ ............... 79
4.3.1.1 Scenario 1................................ ................................ ................................ ......... 79
4.3.1.2 Scenario 2................................ ................................ ................................ ......... 82
4.3.1.3 Scenario 3................................ ................................ ................................ ......... 83
4.3.2 Part B ................................ ................................ ................................ ............... 87
Chapter 5 Experimental Validation ................................ ................................ ....... 95
5.1 PV Inverter ................................ ................................ ................................ ....... 95
5.1.1 Islanded System ................................ ................................ ............................... 95
5.1.2 Grid-connected System ................................ ................................ .................. 108
5.2 Battery Inverter ................................ ................................ .............................. 119
5.2.1 Islanded System ................................ ................................ ............................. 119
5.2.2 Grid-connected System ................................ ................................ .................. 123
5.3 PV-battery Inverter ................................ ................................ ......................... 124
Chapter 6 Conclusion and Future Work ................................ ............................. 128
6.1 Comparison ................................ ................................ ................................ .... 128
6.2 Conclusion ................................ ................................ ................................ ..... 130
6.3 Future Work ................................ ................................ ................................ ... 131
Reference ................................ ................................ ................................ ................... 133
Appendix ................................ ................................ ................................ .................... 146
參考文獻 References
[1] PVPS, "A Snapshot of Global PV," Report IEA PVPS T1-29, 2016.
[2] N. Mohan, T. M. Undeland, et al., Power Electronics—Converters, Applications
and Design, 3rd edition, John Wiley & Sons, New York, 2003.
[3] Wu, Bin, and Mehdi Narimani. High-power converters and AC drives. Vol. 59.
John Wiley & Sons, 2017.
[4] A. M. Hava, R. J. Kerkman, et al., Carrier-based PWM-VSI Overmodulation
Strategies: Analysis, Comparison and Design, IEEE Transactions on Power
Electronics, Vol. 13,No. 4, pp. 674–689, 1998.
[5] D. G. Holmes and T. A. Lipo, Pulse Width Modulation for Power Converters—
Principleand Practice, IEEE Press/Wiley-Interscience, New York, 2003.
[6] M. H. Rashid, Power Electronics Handbook, Academic Press, New York, 2001.
[7] P. C. Krause, O. Wasynczuk, et al., Analysis of Electric Machinery and Drive
Systems, 2nd edition, IEEE Press/Wiley-Interscience, New York, 2002.
[8] GE Toshiba Automation Systems, A New Family of MV Drives for a New
Century— DURA BILT 5i MV, Product Brochure, 50 pages, March 2003.
[9] M. F. Escalante, J. C. Vannier, et al., Flying Capacitor Multilevel Inverters and
DTC MotorDrive Applications, IEEE Transactions on Industrial Applications,
Vol. 49, No. 4, pp. 809–815, 2002.
[10] L. Xu and V. G. Agelidis, Flying Capacitor Multilevel PWM Converter Based
UPFC, IEE Proceedings on Electric Power Applications, Vol. 149, No. 4, pp.
304–310, 2002.
[11] R. Rojas, T. Ohnishi, et al., An Improved Voltage Vector Control Method for
Neutral-Point-clamped Inverters, IEEE Transactions on Power Electronics, Vol.
10, No. 6, pp. 666–672, 1995.
[12] D. W. Feng, B. Wu, et al., Space Vector Modulation for Neutral Point Clamped
Multilevel Inverter with Even Order Harmonic Elimination, Canadian
Conference on Electrical and Computer Engineering (CCECE), pp. 1471–1475,
2004.
[13] H. Kim, D. Jung, et al., A New Discontinuous PWM Strategy of Neutral Point
Clamped Inverter, IEEE Industry Application Society Conference (IAS), pp.
2017–2023, 2000.
[14] T. Kerekes, R. Teodorescu, M. Liserre, C. Klumpner, and M. Sumner,
“Evaluation of three-phase transformerless photovoltaic inverter topologies,”
IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2202–2211, Sep. 2009.
[15] Nabae, I. Takahashi, and H. Akagi, “A new neutral-point-clamped PWM
inverter,” IEEE Trans. Ind. Appl., vol. IA-17, no. 5, pp. 518–523, Sep./Oct. 1981.
[16] L. G. Franquelo et al., “The age of multilevel converters arrives,” IEEE Trans.
Ind. Electron. Mag., vol. 2, no. 2, pp. 28–39, Jun. 2008.
[17] J. Rodriguez, S. Bernet, P. K. Steimer, and I. E. Lizama, “A survey on neutralpoint-clamped inverters,” IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2219–
2230, Jul. 2010.
[18] E. Gurpinar and A. Castellazzi, "Single-Phase T-Type Inverter Performance
Benchmark Using Si IGBTs, SiC MOSFETs, and GaN HEMTs," in IEEE
Transactions on Power Electronics, vol. 31, no. 10, pp. 7148-7160, Oct. 2016.
[19] H. Van Der Broeck, H. Skudelny, and G. Stanke, “Analysis and realization of a
pulse width modulator based on voltage space vectors,” in IEEE-IAS Conf. Rec.,
1986, pp. 244–251.
[20] G. Pfaff, A. Weschta, and A. Wick, “Design and experimental results of a
brushless ac servo-drive,” in IEEE-Industrial Application Soc. Conf. Rec., San
Francisco, CA, 1982, pp. 692–697.
[21] J. Holtz, “Pulsewidth modulation for electronic power conversion,” Proc. IEEE,
vol. 8, pp. 1194–1214, Aug. 1994.
[22] S. Ogasawara, H. Akagi, and A. Nabae, “A novel PWM scheme of voltage
source inverter based on space vector theory,” in European Power Electron.
Conf. Rec., Aachen, Germany, 1989, pp. 1197–1202.
[23] Hava, Ahmet M., Russel J. Kerkman, and Thomas A. Lipo. "Simple analytical
and graphical methods for carrier-based PWM-VSI drives." IEEE transactions
on power electronics14.1 (1999): 49-61.
[24] A. Sch¨onung and H. Stemmler, “Static frequency changers with subharmonic
control in conjunction with reversible variable speed ac drives,”Brown Boveri
Rev., Sept. 1964, pp. 555–577.
[25] G. Buja and G. Indri, “Improvement of pulse width modulation techniques,”
Archiv f¨ur Elektrotechnik, vol. 57, pp. 281–289, 1975.
[26] S. R. Bowes and A. Midoun, “Suboptimal switching strategies for
microprocessor controlled PWM inverter drives,” Proc. Inst. Elect. Eng., vol.
132, pt. B, pp. 133–148, May 1985.
[27] J. W. Kolar, H. Ertl, and F. C. Zach, “Influence of the modulation method on the
conduction and switching losses of a PWM converter system,” IEEE Trans. Ind.
Applicat., vol. 27, pp. 1063–1075, Nov./Dec. 1991.
[28] K. Taniguchi, Y. Ogino, and H. Irie, “PWM technique for power MOSFET
inverter,” IEEE Trans. Power Electron., July 1988, pp. 328–334.
[29] T. Kenjo, Power Electronics for the Microprocessor Age. Oxford, U.K.: Oxford
Univ. Press, 1990.
[30] J. Schr¨orner, “Bezugsspannung zur umrichtersteuerung,” in ETZ-b, Bd. 27, pp.
151–152, 1976.
[31] M. Depenbrock, “Pulse width control of a 3-phase inverter with nonsinusoidal
phase voltages,” in IEEE-ISPC Conf. Rec., pp. 399–403, 1977.
[32] S. Kouro et al., “NPC multilevel multistring topology for large scale grid
connected photovoltaic systems,” in Proc. PEDG Conf., 2010, pp. 400–405.
[33] S. B. Kjaer, J. K. Pedersen, and F. Blaabjerg, “A review of single-phase gridconnected inverters for photovoltaic modules,” IEEE Trans. Ind. Appl., vol. 41,
no. 5, pp. 1292–1306, Sep./Oct. 2005.
[34] S. Vighetti, J. P. Ferrieux, and Y. Lembeye, “Optimization and design of a
cascaded dc/dc converter devoted to grid-connected photovoltaic systems,”
IEEE Trans. Power Electron., vol. 27, no. 4, pp. 2018–2027, Apr. 2012.
[35] J. S. Lee and K. B. Lee, “Variable DC-link voltage algorithm with a wide range
of MPPT for a two-string PV system,” Energies, vol. 6, no. 1, pp. 58–78, Jan.
2013.
[36] U.-M. Choi, F. Blaabjerg, and K.-B. Lee, “Control strategy of two capacitor
voltages for separate MPPTs in photovoltaic systems using neutral-pointclamped inverters,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3295-3303, 2015.
[37] U. M. Choi, H. H. Lee and K. B. Lee, “Simple Neutral-Point Voltage Control
for Three-Level Inverters Using a Discontinuous Pulse Width Modulation,”
IEEE Trans. Energy Convers., June 2013, vol. 28, no. 2, pp. 434-443.
[38] H. Akagi and T. Hatada, “Voltage Balancing Control for a Three-Level DiodeClamped Converter in a Medium-Voltage Transformerless Hybrid Active Filter,”
IEEE Trans. Power Electron, March 2009, vol. 24, no. 3, pp. 571-579.
[39] U. M. Choi, J. S. Lee and K. B. Lee, “New Modulation Strategy to Balance the
Neutral-Point Voltage for Three-Level Neutral-Clamped Inverter Systems,”
IEEE Trans. Energy Convers., March 2014, vol. 29, no. 1, pp. 91-100.
[40] J. A. Martinez, J. E. Garcia, and S. Arnaltes, “Direct power control of grid
connected PV systems with three level NPC inverter,” Solar Energies, vol. 84,
no. 7, pp. 1175–1186, Jul. 2011.
[41] X. Li, S. Dusmez, B. Akin and K. Rajashekara, "A New SVPWM for the Phase
Current Reconstruction of Three-Phase Three-level T-type Converters,"
in IEEE Transactions on Power Electronics, vol. 31, no. 3, pp. 2627-2637,
March 2016.
[42] Y. Park, S. K. Sul, C. H. Lin, W. C. Kim, and S. H. Lee, “Asymmetric control
of dc-link voltage for separate MPPTs in three-level inverters,” IEEE Trans.
Power Electron., vol. 28, no. 6, pp. 2760–2769, Jun. 2013.
[43] H. R. Teymour, D. Sutanto, K. M. Muttaqi and P. Ciufo, "Solar PV and Battery
Storage Integration using a New Configuration of a Three-Level NPC Inverter
With Advanced Control Strategy," in IEEE Trans. on Energy Convers, vol. 29,
no. 2, pp. 354-365, June 2014.
[44] H. S. Kim, Y. C. Kwon, S. J. Chee and S. K. Sul, "Analysis and Compensation
of Inverter Nonlinearity for Three-Level T-Type Inverters," in IEEE
Transactions on Power Electronics, vol. 32, no. 6, pp. 4970-4980, June 2017.
[45] X. Xing, C. Zhang, A. Chen, J. He, W. Wang and C. Du, "Space-VectorModulated Method for Boosting and Neutral Voltage Balancing in $Z$-Source
Three-Level T-Type Inverter," in IEEE Transactions on Industry Applications,
vol. 52, no. 2, pp. 1621-1631, March-April 2016.
[46] Z. Zhang, O. C. Thomsen and M. A. E. Andersen, "The circuit-level decoupling
modulation strategy for three-level neutral-point-clamped (TL-NPC)
inverter," Proceedings of the 2011 14th European Conference on Power
Electronics and Applications, Birmingham, 2011, pp. 1-10.
[47] Z. Zhang, O. C. Thomsen, and M. A. Andersen, “Discontinuous PWM
modulation strategy with circuit-level decoupling concept of three-level neutralpoint-clamped (NPC) inverter,” IEEE Trans. Ind. Electron, vol. 60, no. 5, pp.
1897-1906, 2013.
[48] Z. Zhang, A. Anthon and M. A. E. Andersen, "Comprehensive loss evaluation
of neutral-point-clamped (NPC) and T-Type three-level inverters based on a
circuit level decoupling modulation," 2014 International Power Electronics
and Application Conference and Exposition, Shanghai, 2014, pp. 82-87.
[49] S. C. Smith, P. K. Sen, B. Kroposki and K. Malmedal, “Renewable energy and
energy storage systems in rural electrical power systems: Issues, challenges and
application guidelines," 2010 IEEE Rural Electric Power Conference (REPC),
Orlando, FL, 2010, pp. B4-B4-7.
[50] V. Marano and G. Rizzoni, "Energy and economic evaluation of PHEVs and
their interaction with renewable energy sources and the power grid," 2008 IEEE
International Conference on Vehicular Electronics and Safety, Columbus, OH,
2008, pp. 84-89.
[51] Linden, David, and Thomas B. Reddy. "Handbook of Batteries. 3rd." McGrawHill (2002).
[52] Kiehne, Heinz Albert. Battery technology handbook. CRC Press, 2003.
[53] D. M. T. J. Williams, A. M. Gole and R. W. Wachal, "Repurposed battery for
energy storage in applications of renewable energy for grid applications," 2011
24th Canadian Conference on Electrical and Computer Engineering(CCECE),
Niagara Falls, ON, 2011, pp. 001446-001450.
[54] M. Schweizer and J.W. Kolar, “Design and implementation of a highly efficient
3-level T-type converter for low-voltage applications,” IEEE Trans. Power
Electron., vol. 28, no. 2, pp. 889–907, Feb. 2013.
[55] A. Anthon, Z. Zhang, M. A. E. Andersen, D. G. Holmes, B. McGrath and C. A.
Teixeira, "The Benefits of SiC mosfets in a T-Type Inverter for Grid-Tie
Applications," in IEEE Transactions on Power Electronics, vol. 32, no. 4, pp.
2808-2821, April 2017.
[56] S. Xu, J. Zhang and J. Hang, "Investigation of a Fault-Tolerant Three-Level TType Inverter System," in IEEE Transactions on Industry Applications, vol. 53,
no. 5, pp. 4613-4623, Sept.-Oct. 2017.
[57] A. T. Elsayed, C. R. Lashway and O. A. Mohammed, "Advanced Battery
Management and Diagnostic System for Smart Grid Infrastructure," in IEEE
Trans. on Smart Grid, vol. 7, no. 2, pp. 897-905, March 2016.
[58] K. Basaran, N. S. Cetin and S. Borekci, "Energy management for on-grid and
off-grid wind/PV and battery hybrid systems," in IET Renewable Power
Generation, vol. 11, no. 5, pp. 642-649, 4 12 2017.
[59] L. Ben-Brahim, "A Discontinuous PWM Method for Balancing the Neutral
Point Voltage in Three-Level Inverter-Fed Variable Frequency Drives," in IEEE
Trans. on Energy Conv, vol. 23, no. 4, pp. 1057-1063, Dec. 2008.
[60] N. S. Choi, E. C. Lee and K. S. Ahn, "A carrier-based medium vector PWM
strategy for three-level inverters in transformerless photovoltaic systems," 2015
9th International Conference on Power Electronics and ECCE Asia (ICPEECCE Asia), Seoul, 2015, pp. 2752-2757.
[61] N. Celanovich and D. Boroyevich, “A comprehensive study of neutral point
voltage balancing problem in three-level neutral-point-clamped voltage source
PWM inverters,” IEEE Trans. Power Electron., vol. 15, no.2,pp. 242–249, Mar.
2000.
[62] S. Ogasawara and H. Akagi, “Analysis of variation of neutral point potential in
neutral-point-clamped voltage source PWM inverters,” in Proc. IEEE Ind. Appl.
Soc. Conf. Rec., 1993, pp. 965–970.
[63] J. Pou, R. Pindado, D. Boroyevich, and P. Rodr´ıguez, “Limits of the neutralpoint balance in back-to-back-connected three-level converters,” IEEE Trans.
Power Electron., vol. 19, no. 3, pp. 722–731, May 2004.
[64] Qiang Song, Wenhua Liu, Qingguang Yu, Xiaorong Xie, and Zhonghong Wang,
“A neutral-point potential balancing algorithm for three-level NPC inverters
using analytically injected zero-sequence voltage,” in Proc. IEEE APEC’03,
Feb. 1993, vol. 1, pp. 228–233.
[65] J. Shen, S. Schroder, B. Duro and R. Roesner, "A Neutral-Point Balancing
Controller for a Three-Level Inverter With Full Power-Factor Range and Low
Distortion," in IEEE Trans. on Ind. Appl, vol. 49, no. 1, pp. 138-148, Jan.-Feb.
2013.
[66] Y. Park, S. K. Sul, C. H. Lim, W. C. Kim and S. H. Lee, "Asymmetric Control
of DC-Link Voltages for Separate MPPTs in Three-Level Inverters," in IEEE
Trans. on Power Electron, vol. 28, no. 6, pp. 2760-2769, June 2013.
[67] S. D. G. Jayasinghe, D. M. Vilathgamuwa and U. K. Madawala, "DiodeClamped Three-Level Inverter-Based Battery/Supercapacitor Direct Integration
Scheme for Renewable Energy Systems," in IEEE Trans. on Power Electron,
vol. 26, no. 12, pp. 3720-3729, Dec. 2011.
[68] June-Seok Lee, Seung-Joo Lee, and Kyo-Beum Lee, "Novel Switching Method
for Single-Phase NPC Three-Level Inverter with Neutral-Point Voltage
Control," International Journal of Electronics, vol. 105, no.2, pp. 303-323, Feb.
2018
[69] M. M. Hashempour, M. Yang and T. Lee, "An Adaptive Control of DPWM for
Clamped-Three-Level Photovoltaic Inverters With Unbalanced Neutral-Point
Voltage," in IEEE Trans. on Ind. Appl, vol. 54, no. 6, pp. 6133-6148, Nov.-Dec.
2018.
[70] M. M. Hashempour, M. Yang and T. Lee, "A DPWM-controlled three-level Ttype inverter for photovoltaic generation considering unbalanced neutral-point
voltage," 2017 IEEE Energy Conversion Congress and Exposition (ECCE),
Cincinnati, OH, 2017, pp. 3856-3862.
[71] W. Jiang and B. Fahimi, "Multiport Power Electronic Interface—Concept,
Modeling, and Design," in IEEE Transactions on Power Electronics, vol. 26, no.
7, pp. 1890- 1900, July 2011.
[72] H. Zhu, D. Zhang, H. S. Athab, B. Wu and Y. Gu, "PV Isolated Three-Port
Converter and Energy-Balancing Control Method for PV-Battery Power Supply
Applications," in IEEE Transactions on Industrial Electronics, vol. 62, no. 6, pp.
3595-3606, June 2015.
[73] J. Sachs and O. Sawodny, "A Two-Stage Model Predictive Control Strategy
for Economic Diesel-PV-Battery Island Microgrid Operation in Rural Areas,"
in IEEE Transactions on Sustainable Energy, vol. 7, no. 3, pp. 903-913, July
2016.
[74] A. Merabet, K. Tawfique Ahmed, H. Ibrahim, R. Beguenane and A. M. Y. M.
Ghias, "Energy Management and Control System for Laboratory Scale
Microgrid Based Wind-PV-Battery," in IEEE Transactions on Sustainable
Energy, vol. 8, no. 1, pp. 145-154, Jan. 2017.
[75] M. O. Badawy and Y. Sozer, "Power Flow Management of a Grid Tied PVBattery System for Electric Vehicles Charging," in IEEE Transactions on
Industry Applications, vol. 53, no. 2, pp. 1347-1357, March-April 2017.
[76] J. Zaragoza et al., “Voltage-balance compensator for a carrier-based modulation
in the neutral-point-clamped converter,” IEEE Trans. Ind. Electron., vol. 56, no.
2, pp. 305–314, Feb. 2009.
[77] C. Wang and Y. Li, “Analysis and calculation of zero-sequence voltage
considering neutral-point potential balancing in three-level NPC converters,”
IEEE Trans. Ind. Electron., vol. 57, no. 7, pp. 2262–2271, Jul. 2010.
[78] A. Lewicki, Z. Krzeminski, and H. Abu-Rub, “Space-vector pulsewidth
modulation for three-level NPC converter with the neutral point voltage control,”
IEEE Trans. Ind. Electron., vol. 58, no. 11, pp. 5076–5086, Nov. 2011.
[79] J. Rodriguez et al., "Predictive Current Control of a Voltage Source Inverter,"
in IEEE Transactions on Industrial Electronics, vol. 54, no. 1, pp. 495-503, Feb.
2007.
[80] P. Jintakosonwit, H. Fujita and H. Akagi, "Control and performance of a fullydigital-controlled shunt active filter for installation on a power distribution
system," in IEEE Transactions on Power Electronics, vol. 17, no. 1, pp. 132-
140, Jan 2002.
[81] C. R. D. Osório, G. S. da Silva, J. C. Giacomini and C. Rech, "Comparative
analysis of predictive current control techniques applied to single-phase grid-
connected inverters," 2017 Brazilian Power Electronics Conference (COBEP),
Juiz de Fora, 2017, pp. 1-6.
[82] T. L. Lee, J. C. Li, and P. T. Cheng, “Discrete frequency tuning active filter for
power system harmonics,” IEEE Trans. Power Electron., vol. 24, no. 5, pp.
1209-1217, May 2009.
[83] J. Shen, S. Schröder, R. Rösner, and S. El-Barbari, “A comprehensive study of
neutral-point self-balancing effect in neutral-point-clamped three-level
inverters,” IEEE Trans. Power electron., vol. 26, no. 11, pp. 3084-3095, 2011.
[84] M. Marchesoni, P. Segarich and E. Soressi, "A new control strategy for neutralpoint-clamped active rectifiers," in IEEE Trans. on Ind. Electron, vol. 52, no. 2,
pp. 462-470, April 2005.
[85] A. Sangwongwanich, Y. Yang, D. Sera and F. Blaabjerg, "Lifetime Evaluation
of Grid-Connected PV Inverters Cnsidering Panel Degradation Rates and
Installation Sites," in IEEE Transactions on Power Electronics, vol. 33, no 2,
pp. 1225-1236, Feb. 2018.
[86] S. E. De León-Aldaco, H. Calleja and J. Aguayo Alquicira, "Reliability and
Mission Profiles of Photovoltaic Systems: A FIDES Approach," in IEEE
Transactions on Power Electronics, vol. 30, no. 5, pp. 2578-2586, May 2015.
[87] N. Sintamarean, F. Blaabjerg, H. Wang, F. Iannuzzo and P. de Place Rimmen,
"Reliability Oriented Design Tool For the New Generation of Grid Connected
PV-Inverters," in IEEE Transactions on Power Electronics, vol. 30, no. 5, pp.
2635-2644, May 2015.
[88] J. M. Lenz, H. C. Sartori and J. R. Pinheiro, "Defining Photovoltaic Mission
Profile for the Pre-Design of Static Converters," in IEEE Latin America
Transactions, vol. 16, no. 5, pp. 1402-1409, May 2018.
[89] Yongho Kim, Hyunmin Jo and Deokjung Kim, "A new peak power tracker for
cost-effective photovoltaic power system," IECEC 96. Proceedings of the 31st
Intersociety Energy Conversion Engineering Conference, Washington, DC,
USA, 1996, pp. 1673-1678 vol.3.
[90] C. R. Sullivan and M. J. Powers, "A high-efficiency maximum power point
tracker for photovoltaic arrays in a solar-powered race vehicle," Proceedings of
IEEE Power Electronics Specialist Conference - PESC '93, Seattle, WA, USA,
1993, pp. 574-580.
[91] L. Jie and C. Ziran, "Research on the MPPT algorithms of photovoltaic system
based on PV neural network," 2011 Chinese Control and Decision Conference
(CCDC), Mianyang, 2011, pp. 1851-1854.
[92] Enslin, Johan HR, et al. "Integrated photovoltaic maximum power point
tracking converter." IEEE Transactions on industrial electronics 44.6 (1997):
769-773.
[93] Dong-Yun Lee, Hyeong-Ju Noh, Dong-Seok Hyun and Ick Choy, "An improved
MPPT converter using current compensation method for small scaled PVapplications," Eighteenth Annual IEEE Applied Power Electronics Conference
and Exposition, 2003. APEC '03., Miami Beach, FL, USA, 2003, pp. 540-545
vol.1.
[94] C. D. Rahn and C.-Y. Wang, Battery Systems Engineering. 2013.
[95] C. Chen, K. Man, and T. Ting, “Design and Realization of a Smart Battery
Management System,” Proc. Int. MultiConference Eng. Comput. Sci. Vol. II,
vol. II, pp. 14–17, 2012.
[96] W.-Y. Chang, “The State of Charge Estimating Methods for Battery: A Review,”
ISRN Appl. Math., vol. 2013, no. 1, pp. 1–7, 2013.
[97] S. Li and B. Ke, “Study of battery modeling using mathematical and circuit
oriented approaches,” IEEE Power Energy Soc. Gen. Meet., pp. 1–8, 2011.
[98] H. Chen, T. N. Cong, W. Yang, C. Tan, Y. Li, and Y. Ding, “Progress in electrical
energy storage system: A critical review,” Prog. Nat. Sci., vol. 19, no. 3, pp.
291–312, 2009.
[99] M. R. Jongerden and B. R. Haverkort, “Which battery model to use?,” IET
Softw., vol. 3, no. 6, p. 445, 2009.
[100] J. Chiasson and B. Vairamohan, “Estimating the State of Charge of a Battery,”
IEEE Trans. Control Syst. Technol., vol. 13, no. 3, pp. 465–470, 2005.
[101] M. I. Wahyuddin, P. S. Priambodo and H. Sudibyo, "State of Charge (SoC)
Analysis and Modeling Battery Discharging Parameters," 2018 4th
International Conference on Science and Technology (ICST), Yogyakarta, 2018,
pp. 1-5.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:開放下載的時間 available 2024-09-05

您的 IP(校外) 位址是 44.200.49.193
現在時間是 2024-03-29
論文校外開放下載的時間是 2024-09-05

Your IP address is 44.200.49.193
The current date is 2024-03-29
This thesis will be available to you on 2024-09-05.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code