Responsive image
博碩士論文 etd-0806108-164040 詳細資訊
Title page for etd-0806108-164040
論文名稱
Title
乙型血管張力素在大鼠孤立束核中調控心臟血管之分子機制探討
The Molecular Mechanism of Angiotensin II on Cardiovascular Regulation in the Nucleus Tractus Solitarii of Rats
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
121
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2008-06-20
繳交日期
Date of Submission
2008-08-06
關鍵字
Keywords
一氧化氮、活性氧、孤立束核、乙型血管張力素
angiotensin II, nucleus tractus solitarii, nitric oxide, reactive oxygen species, neuronal nitric oxide synthase
統計
Statistics
本論文已被瀏覽 5651 次,被下載 4
The thesis/dissertation has been browsed 5651 times, has been downloaded 4 times.
中文摘要
乙型血管張力素 (angiotensin II, Ang II) 不管在周邊或是中樞神經皆有調控生理機能的作用。在大鼠腦幹孤立束核 (nucleus tractus solitarii, NTS) 乙型血管張力素會透過其第一型接受器來調控中樞心血管的作用並導致高血壓的發生。在我們實驗室之前的研究曾指出在大鼠的孤立束核若是抑制了一氧化氮的形成,會導致高血壓的發生。在過去的文獻中也發現自發性高血壓大鼠 (spontaneously hypertensive rat, SHR)的孤立束核中乙型血管張力素的活性較高,並且會透過與乙型血管張力素第一型接受器 (angiotensin II type-1 receptors, AT1R) 的結合而產生了活化氧 (reactive oxygen species, ROS)。但乙型血管張力素如何造成高血壓的分子機制目前還尚未明瞭。所以本實驗之目的想更進一步地探討乙型血管張力素在孤立束核中心臟血管調控之分子機制。在先期實驗中,我們使用16週大的雄性自發性高血壓大鼠給予每天每公斤30毫克的乙型血管張力素第一型接受器阻斷劑 losartan,或是在飲水中加入每天每公斤1毫莫耳的超氧化物歧化酶相似物
tempol 持續兩週,且每隔3-4天均測量其尾動脈壓。結果顯示自發性高血壓大鼠
在餵養 losartan 或是 tempol 4天後,其血壓較未餵養藥物的自發性高血壓大鼠
已有明顯的降低,且血壓會緩慢並持續地降低。此外,我們也發現在給予藥物治
療的兩組動物,其孤立束核中一氧化氮的含量比未給予藥物治療的高血壓大鼠
高。然而未給予藥物治療的高血壓大鼠孤立束核中活性氧的含量卻較給予藥物治療的兩組大鼠高。這些結果顯示出當抑制了自發性高血壓大鼠孤立束核中乙型血
管張力素透過其第一型接受器的作用後,其活性氧含量會下降且血壓也有顯著的
降低。另外,在西方墨點與免疫組織染色中也觀察到當餵食藥物後孤立束核中神
經性一氧化氮合成酶 (neuronal nitric oxide synthase, nNOS) 的活性比高血壓大
鼠有顯著性的提高,但內皮性與誘發性一氧化氮合成酶則沒有此現象。所以我們
的實驗結果也顯示了神經性一氧化氮合成酶在自發性高血壓大鼠孤立束核中一
氧化氮的生成以及血壓的調控可能扮演著重要的角色。而在探討乙型血管張力素
如何影響神經性一氧化氮合成酶的活性方面,利用共同免疫沉澱、激酶分析以及
西方墨點分析,我們發現在大鼠的孤立束核中神經性一氧化氮合成酶在自發性高
血壓大鼠的孤立束核中會與RSK和ERK1/2有相互關係的存在,並且也進一步證
實了ERK1/2會透過活化RSK來促進神經性一氧化氮合成酶的磷酸化而使得一氧
化氮的產生增加。所以我們的實驗結果顯示乙型血管張力素會透過其第一型接受
器導致活化氧含量的上升而使得ERK1/2與RSK去活化後,抑制了神經性一氧化
氮合成酶造成了孤立束核中一氧化氮的減少而影響了心臟血管作用的調控。
Abstract
Angiotensin II (Ang II) exerts diverse physiological actions in both peripheral and central nervous system. It has been demonstrated to implicate in central mechanisms leading to hypertension in the nucleus tractus solitarii (NTS) of rats, and mediated by the type-1 receptors (AT1R). Our previous studies already suggested that inhibition of NO synthesis in the NTS causes sustained hypertension. It was reported that the activity of Ang II was higher in the NTS of spontaneously hypertensive rat (SHR) and AT1R are colocalized in the neurons of the NTS, providing the local reactive oxygen species (ROS) production by Ang II. However, the signaling mechanisms of Ang II that induce hypertension remain uncertain. In the present study, we investigated the possible signal pathways involved in the cardiovascular regulation of Ang II in the NTS. Male SHR was treated with AT1R blocker, losartan (30 mg/kg/day) or superoxide dismutase (SOD) mimetic, tempol (1 mM/kg/day) for two weeks, systolic blood pressure was decreased significantly in losartan- or tempol-treated SHR. The NTS was excised for dihydroethidium (DHE) staining, NO analysis, immunoblotting and immunohistochemistry. Our results demonstrated that DHE staining revealed of ROS was much more in the NTS of SHR than in the NTS of wistar-Kyoto (WKY) rat. The ROS in the NTS of SHR was reduced by losartan. The NO content in the NTS of SHR was lower than WKY, while losartan and tempol could increase NO in the NTS of SHR. Immunoblotting and immunohistochemistry studies demonstrated that Ang II-induced hypertension inhibited neuronal NO synthase (nNOS), ERK and RSK phosphorylation levels in the NTS of SHR. These results suggest that Ang II induces ROS production in the NTS of SHR. In addition, the cardiovascular modulatory effects of Ang II in the NTS are accomplished by downregulation of ERK1/2-RSK phosphorylation levels and then nNOS level.
目次 Table of Contents
Chinese Abstract……………………………………………………………………I
English Abstract…………………………………………………………………….III
Abbreviation………………………………………………………………………...V
Contents……………………………………………………………………………..VII

1. Introduction………………………………………………………………………..1
2. Specific Aims……………………………………………………………….……13
3. Materials and Methods……………………………………………………...…....14
4. Results……………………………………………………………………………26
5. Discussion………………………………………………………………………..40
6. Conclusion…………………………………………………………………...…...46
7. Future Perspectives……………………………………………………………47
8. References………………………………………………………………………..49
9. Figures and Figure Legends……………………………………………………59
10. Appendix……………………………………………………………………..…106
參考文獻 References
Ando H, Zhou J, Macova M, Imboden H, Saavedra JM. Angiotensin II AT1 receptor blockade reverses pathological hypertrophy and inflammation in brain microvessels of spontaneously hypertensive rats. Stroke. 2004; 35(7):1726-1731.

Andreozzi F, Laratta E, Sciacqua A, Perticone F, Sesti G. Angiotensin II impairs the insulin signaling pathway promoting production of nitric oxide by inducing phosphorylation of insulin receptor substrate-1 on Ser312 and Ser616 in human umbilical vein endothelial cells. Circ Res. 2004; 94(9): 1211–1218.

Barraco RA, Ergene E, Dunbar JC, el-Ridi MR. Cardiorespiratory response patterns elicited by microinjections of neuropeptide Y in the nucleus tractus solitarius. Brain Res Bull. 1990; 24(3):465-485.

Bendall JK, Rinze R, Adlam D, Tatham AL, de Bono J, Channon KM. Endothelial
Nox2 Overexpression Potentiates Vascular Oxidative Stress and Hemodynamic
Response to Angiotensin II. Studies in Endothelial-Targeted Nox2 Transgenic Mice.
Circ Res. 2007; 100(7):1016-1025.

Blenis J. Signal transduction via the MAP kinases: proceed at your own RSK. Proc Natl Acad Sci U S A. 1993; 90(13):5889-5892.

Bredt DS, Snyder SH. Isolation of nitric oxide synthetase, a calmodulin-requiring enzyme. Proc Natl Acad Sci U S A. 1990; 87(2):682-685.

Chan SHH, Hsu K-S, Huang C-C, Wang L-L, Ou C-C, Chan JYH. NADPH Oxidase-Derived Superoxide Anion Mediates Angiotensin II-Induced Pressor Effect via Activation of p38 Mitogen-Activated Protein Kinase in the Rostral Ventrolateral Medulla. Circ Res. 2005; 97(8):772-780.

Chen ZP, McConell GK, Michell BJ, Snow RJ, Canny BJ, Kemp BE. AMPK signaling in contracting human skeletal muscle: acetyl-CoA carboxylase and NO synthase phosphorylation. Am J Physiol Endocrinol Metab. 2000; 279(5):E1202-1206.

Chou TC, Yen MH, Li CY, Ding YA. Alterations of nitric oxide synthase expression with aging and hypertension in rats. Hypertension. 1998; 31(2):643-648.

Dandona P, Dhindsa S, Ghanim H, Chaudhuri A. Angiotensin II and inflammation: the effect of angiotensin-converting enzyme inhibition and angiotensin II receptor blockade. J Hum Hypertens. 2006; 21(1):20-27.

de Gasparo M, Catt KJ, Inagami T, Wright JW, Unger T. International Union of Pharmacology. XXIII. The Angiotensin II Receptors. Pharmacol Rev. 2000; 52(3):415-472.

Delbosc S, Paizanis E, Magous R, Araiz C, Dimo T, Cristol JP, Cros G, Azay J. Involvement of oxidative stress and NADPH oxidase activation in the development of cardiovascular complications in a model of insulin resistance, the fructose-fed rat. Atherosclerosis. 2005; 179(1):43-49.

Diz DI, Jessup JA, Westwood BM, Bosch SM, Vinsant S, Gallagher PE, Averill DB. Angiotensin peptides as neurotransmitters/neuromodulators in the dorsomedial medulla. Clin Exp Pharmacol Physiol. 2002; 29(5-6):473-482.

Edwards JG and Tipton CM. Influences of exogenous insulin on arterial blood pressure measurements of the rat. J Appl Physiol. 1989; 67(6):2335-2342.

Eshima K, Hirooka Y, Shigematsu H, Matsuo I, Koike G, Sakai K, Takeshita A. Angiotensin in the Nucleus Tractus Solitarii Contributes to Neurogenic Hypertension Caused by Chronic Nitric Oxide Synthase Inhibition. Hypertension. 2000; 36(2):259-263.

Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Oxidative stress and stress-activated signaling pathways: a unifying hypothesis of type 2 diabetes. Endocr Rev. 2002; 23(5):599-622.

Evans JL, Goldfine ID, Maddux BA, Grodsky GM. Are oxidative stress-activated signaling pathways mediators of insulin resistance and beta-cell dysfunction? Diabetes. 2003; 52(1):1-8.

Frodin M, Gammeltoft S. Role and regulation of 90 kDa ribosomal S6 kinase (RSK) in signal transduction. Mol Cell Endocrinol. 1999; 151(1-2):65-77.

Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, Franke TF, Papapetropoulos A, Sessa WC. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature. 1999; 399(6736):597-601.

Gai WP, Messenger JP, Yu YH, Gieroba ZJ, Blessing WW. Nitric oxide-synthesising neurons in the central subnucleus of the nucleus tractus solitarius provide a major innervation of the rostral nucleus ambiguus in the rabbit. J Comp Neurol. 1995; 357(3):348-361.

Glass MJ, Huang J, Oselkin M, Tarsitano MJ, Wang G, Iadecola C, Pickel VM. Subcellular localization of nicotinamide adenine dinucleotide phosphate oxidase subunits in neurons and astroglia of the rat medial nucleus tractus solitarius: relationship with tyrosine hydroxylase immunoreactive neurons. Neuroscience. 2006; 143(2):547-564.

Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res. 1994; 74(6):1141-1148.

Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci. 2006; 7(5):335-346.

Guyton AC, Cowley AW, Jr., Coleman TG, DeClue JW, Norman RA, Manning RD. Hypertension: a disease of abnormal circulatory control. Chest. 1974; 65(3):328-338.

Havrankova J, Roth J, Brownstein M. Insulin receptors are widely distributed in the central nervous system of the rat. Nature. 1978a; 272(5656):827-829.

Havrankova J, Schmechel D, Roth J, Brownstein M. Identification of insulin in rat brain. Proc Natl Acad Sci U S A .1978b; 75(11):5737-5741.

Hirasawa K, Sato Y, Hosoda Y, Yamamoto T, Hanai H. Immunohistochemical localization of angiotensin II receptor and local renin-angiotensin system in human colonic mucosa. J Histochem Cytochem. 2002; 50(2):275-282.

Hirooka Y, Sakai K, Kishi T, Ito K, Shimokawa H, Takeshita A. Enhanced depressor response to endothelial nitric oxide synthase gene transfer into the nucleus tractus solitarii of spontaneously hypertensive rats. Hypertens Res. 2003; 26(4):325-331.

Ho WY, Lu PJ, Hsiao M, Hwang HR, Tseng YC, Yen MH, Tseng CJ. Adenosine Modulates Cardiovascular Functions Through Activation of Extracellular Signal-Regulated Kinases 1 and 2 and Endothelial Nitric Oxide Synthase in the Nucleus Tractus Solitarii of Rats. Circulation. 2008; 117(6):773-780.

Huang HN, Lu PJ, Lo WC, Lin CH, Hsiao M, Tseng CJ. In situ Akt phosphorylation in the nucleus tractus solitarii is involved in central control of blood pressure and heart rate. Circulation. 2004; 110(16):2476-2483.

Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987a; 84(24):9265-9269.

Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium-derived relaxing factor from pulmonary artery and vein possesses pharmacologic and chemical properties identical to those of nitric oxide radical. Circ Res. 1987b; 61(6):866-879.

Jones A, Woods DR. Skeletal muscle RAS and exercise performance. Int J Biochem Cell Biol. 2003; 35(6):855-866.

Juan CC, Chien Y, Wu LY, Yang WM, Chang CL, Lai YH, Ho PH, Kwok CF, Ho LT. Angiotensin II enhances insulin sensitivity in vitro and in vivo. Endocrinology. 2005; 146(5):2246-2254.

Kantzides A, Badoer E. nNOS-containing neurons in the hypothalamus and medulla project to the RVLM. Brain Res. 2005; 1037(1-2):25-34.

Katsunuma N, Tsukamoto K, Ito S, Kanmatsuse K. Enhanced angiotensin-mediated responses in the nucleus tractus solitarii of spontaneously hypertensive rats. Brain Res Bull. 2003; 60(3):209-214.

Kopp UC, Buckley-Bleiler RL. Impaired renorenal reflexes in two-kidney, one clip hypertensive rats. Hypertension. 1989; 14(4):445-452.

Lambeth JD. NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology. 2004; 4(3):181-189.

Lenkei Z, Corvol P, Llorens-Cortes C. The angiotensin receptor subtype AT1A predominates in rat forebrain areas involved in blood pressure, body fluid homeostasis and neuroendocrine control. Brain Res Mol Brain Res. 1995; 30(1):53-60.

Lenkei Z, Palkovits M, Corvol P, Llorens-Cortes C. Expression of angiotensin type-1 (AT1) and type-2 (AT2) receptor mRNAs in the adult rat brain: a functional neuroanatomical review. Front Neuroendocrinol. 1997; 18(4):383-439.

Leslie RA. Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema and dorsal motor nucleus of the vagus. Neurochem Int. 1985; 191-212.

Lin LH, Taktakishvili O, Talman WT. Identification and localization of cell types that express endothelial and neuronal nitric oxide synthase in the rat nucleus tractus solitarii. Brain Res. 2007; 1171:42-51.

Lin LH, Talman WT. Soluble guanylate cyclase and neuronal nitric oxide synthase colocalize in rat nucleus tractus solitarii. J Chem Neuroanat. 2005; 29(2):127-136.

Lo WC, Jan CR, Chiang HT, Tseng CJ. Modulatory effects of carbon monoxide on baroreflex activation in nucleus tractus solitarii of rats. Hypertension. 2000; 35(6):1253-1257.

Loewy, A. D. (1990). Central regulation of autonomic functions. (New York, Oxford Univ. Press).

Mancini GB, Henry GC, Macaya C, O'Neill BJ, Pucillo AL, Carere RG, Wargovich TJ, Mudra H, Luscher TF, Klibaner MI, Haber HE, Uprichard AC, Pepine CJ, Pitt B. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dysfunction in patients with coronary artery disease. The TREND (Trial on Reversing ENdothelial Dysfunction) Study. Circulation. 1996; 94(3):258-265.

Maqbool A, Batten TF, McWilliam PN. Co-localization of neurotransmitter immunoreactivities in putative nitric oxide synthesizing neurones of the cat brain stem. J Chem Neuroanat. 1995; 8(3):191-206.

Matsumura K, Averill DB, Ferrario CM. Angiotensin II acts at AT1 receptors in the nucleus of the solitary tract to attenuate the baroreceptor reflex. Am J Physiol Regul Integr Comp Physiol. 1998; 275(5):R1611-1619.

Menetrey D, Basbaum AI. Spinal and trigeminal projections to the nucleus of the solitary tract: a possible substrate for somatovisceral and viscerovisceral reflex activation. J Comp Neurol. 1987; 255(3):439-450.

Mondon CE, Reaven GM. Evidence of abnormalities of insulin metabolism in rats with spontaneous hypertension. Metabolism. 1988; 37(4):303-305.

Morbidelli L, Donnini S, Ziche M. Role of nitric oxide in the modulation of angiogenesis. Curr Pharm Des. 2003; 9(7):521-530.

Morsing P. Candesartan: a new-generation angiotensin II AT1 receptor blocker: pharmacology, antihypertensive efficacy, renal function, and renoprotection. J Am Soc Nephrol. 1999; 10 Suppl 11:S248-254.

Mosqueda-Garcia R, Tseng CJ, Appalsamy M, Robertson D. Cardiovascular effects of microinjection of angiotensin II in the brainstem of renal hypertensive rats. J Pharmacol Exp Ther. 1990; 255(1):374-381.

Nishimura Y, Ito T, Hoe K, Saavedra JM. Chronic peripheral administration of the angiotensin II AT(1) receptor antagonist candesartan blocks brain AT(1) receptors. Brain Res. 2000; 871(1):29-38.

Nozoe M, Hirooka Y, Koga Y, Sagara Y, Kishi T, Engelhardt JF, Sunagawa K. Inhibition of Rac1-derived reactive oxygen species in nucleus tractus solitarius decreases blood pressure and heart rate in stroke-prone spontaneously hypertensive rats. Hypertension. 2007; 50(1):62-68.

Ogihara T, Asano T, Ando K, Chiba Y, Sakoda H, Anai M, Shojima N, Ono H, Onishi Y, Fujishiro M, Katagiri H, Fukushima Y, Kikuchi M, Noguchi N, Aburatani H, Komuro I, Fujita T. Angiotensin II-induced insulin resistance is associated with enhanced insulin signaling. Hypertension. 2002; 40(6):872-879.

Paravicini TM, Touyz RM. Redox signaling in hypertension. Cardiovascular Research. 2006; 71(2):247-258.

Paton JF, Deuchars J, Ahmad Z, Wong LF, Murphy D, Kasparov S. Adenoviral vector demonstrates that angiotensin II-induced depression of the cardiac baroreflex is mediated by endothelial nitric oxide synthase in the nucleus tractus solitarii of the rat. J Physiol. 2001; 531(Pt 2):445-458.

Paton JF, Waki H, Abdala AP, Dickinson J, Kasparov S. Vascular-brain signaling in hypertension: role of angiotensin II and nitric oxide. Curr Hypertens Rep. 2007; 9(3):242-247.

Peng JF, Phillips MI. Opposite regulation of brain angiotensin type 1 and type 2 receptors in cold-induced hypertension. Regul Pept. 2001; 97(2-3):91-102.

Phillips MI, Summers C. Angiotensin II in central nervous system physiology. Regul Pept. 1998; 78(1-3):1-11.

Qadri F, Carretero OA, Scicli AG. Centrally produced neuronal nitric oxide in the control of baroreceptor reflex sensitivity and blood pressure in normotensive and spontaneously hypertensive rats. Jpn J Pharmacol. 1999; 81(3):279-285.

Rees DD, Palmer RM, Schulz R, Hodson HF, Moncada S. Characterization of three inhibitors of endothelial nitric oxide synthase in vitro and in vivo. Br J Pharmacol. 1990; 101(3):746-752.

Reis DJ. The brain and hypertension: reflections on 35 years of inquiry into the neurobiology of the circulation. Circulation. 1984; 70(5 Pt 2):III31-45.

Saad MJ, Velloso LA, Carvalho CR. Angiotensin II induces tyrosine phosphorylation of insulin receptor substrate 1 and its association with phosphatidylinositol 3-kinase in rat heart. Biochem J. 1995; 310(Pt3): 741–744.

Saavedra JM. Brain and pituitary angiotensin. Endocr Rev. 1992; 13(2):329-380.

Sakai K, Hirooka Y, Matsuo I, Eshima K, Shigematsu H, Shimokawa H, Takeshita A. Overexpression of eNOS in NTS causes hypotension and bradycardia in vivo. Hypertension. 2000; 36(6):1023-1028.

Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature. 2001; 414(6865):799–806.

Sato A, Schmidt RF. Somatosympathetic reflexes: afferent fibers, central pathways, discharge characteristics. Physiol Rev. 1973; 53(4):916-947.

Song T, Sugimoto K, Ihara H, Mizutani A, Hatano N, Kume K, Kambe T, Yamaguchi F, Tokuda M, Watanabe Y. p90 RSK-1 associates with and inhibits neuronal nitric oxide synthase. Biochem J. 2007; 401(2):391-398.

Spyer KM (1990). Central regulation (New York: Oxford Univ Press).

Spyer KM, Mifflin SW, Withington-Wray DJ (1987). Organization of the autonomic nervous system: control and peripheral mechanisms. (New York: Alan R. Lisps).

Tai MH, Hsiao M, Chan JY, Lo WC, Wang FS, Liu GS, Howng SL, Tseng CJ. Gene delivery of endothelial nitric oxide synthase into nucleus tractus solitarii induces biphasic response in cardiovascular functions of hypertensive rats. Am J Hypertens. 2004; 17(1):63-70.

Tai MH, Weng WT, Lo WC, Chan JY, Lin CJ, Lam HC, Tseng CJ. Role of nitric oxide in alpha-melanocyte-stimulating hormone-induced hypotension in the nucleus tractus solitarii of the spontaneously hypertensive rats. J Pharmacol Exp Ther. 2007; 321(2):455-461.

Travagli RA, Gillis RA. Nitric oxide-mediated excitatory effect on neurons of dorsal motor nucleus of vagus. Am J Physiol. 1994; 266(1 Pt 1):G154-160.

Tseng CJ, Appalsamy M, Robertson D, Mosqueda-Garcia R. Effects of nicotine on brain stem mechanisms of cardiovascular control. J Pharmacol Exp Ther. 1993; 265(3):1511-1518.

Tseng CJ, Biaggioni I, Appalsamy M, Robertson D. Purinergic receptors in the brainstem mediate hypotension and bradycardia. Hypertension. 1988; 11(2):191-197.

Tseng CJ, Chou LL, Ger LP, Tung CS. Cardiovascular effects of angiotensin III in brainstem nuclei of normotensive and hypertensive rats. J Pharmacol Exp Ther. 1994; 268(2):558-564.

Tseng CJ, Liu HY, Lin HC, Ger LP, Tung CS, Yen MH. Cardiovascular effects of nitric oxide in the brain stem nuclei of rats. Hypertension. 1996; 27(1):36-42.

Tseng CJ, Mosqueda-Garcia R, Appalsamy M, Robertson D. Cardiovascular effects of neuropeptide Y in rat brainstem nuclei. Circ Res. 1989; 64(1):55-61.

Vincent SR, Kimura H. Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience. 1992; 46(4):755-784.

Veerasingham SJ, Raizada MK. Brain renin-angiotensin system dysfunction in hypertension: recent advances and perspectives. 2003; 139(2):191-202.

Waki H, Kasparov S, Wong LF, Murphy D, Shimizu T, Paton JF. Chronic inhibition of endothelial nitric oxide synthase activity in nucleus tractus solitarii enhances baroreceptor reflex in conscious rats. J Physiol. 2003; 546(Pt 1):233-242.

Waki H, Murphy D, Yao ST, Kasparov S, Paton JF. Endothelial NO synthase activity in nucleus tractus solitarii contributes to hypertension in spontaneously hypertensive rats. Hypertension. 2006; 48(4):644-650.

Wang G, Anrather J, Huang J, Speth RC, Pickel VM, Iadecola C. NADPH Oxidase Contributes to Angiotensin II Signaling in the Nucleus Tractus Solitarius. J. Neurosci. 2004; 24(24):5516-5524.

Wang W, Brandle M, Zucker IH. Acute alcohol administration stimulates baroreceptor discharge in the dog. Hypertension. 1993; 21(5):687-694.

Werther GA, Hogg A, Oldfield BJ, McKinley MJ, Figdor R, Alle AM, Mendelsohn, FA. Localization and characterization of insulin receptors in rat brain and pituitary gland using in vitro autoradiography and computerized densitometry. Endocrinology. 1987; 121(4):1562-1570.

Yang G, Wan Y, Zhu Y. Angiotensin II--an important stress hormone. Biol Signals. 1996; 5(1):1-8.

Yang H, Wang X, Raizada MK. Characterization of Signal Transduction Pathway in Neurotropic Action of Angiotensin II in Brain Neurons. Endocrinology. 2001; 142(8):3502-3511.

Zalba G, Beaumont FJ, San Jose G, Fortuno A, Fortuno MA, Etayo JC, Diez J. Vascular NADH/NADPH oxidase is involved in enhanced superoxide production in spontaneously hypertensive rats. Hypertension. 2000; 35(5):1055-1061.

Zanzinger J, Seller H. Species differences in the distribution of nitric oxide synthase in brain stem regions that regulate sympathetic activity. Brain Res. 1997; 764(1-2):265-268.

Zhang Y, Croft KD, Mori TA, Schyvens CG, McKenzie KU, Whitworth JA. The antioxidant tempol prevents and partially reverses dexamethasone-induced hypertension in the rat. Am J Hypertens. 2004; 17(3):260-265.

Zimmerman MC, Davisson RL. Redox signaling in central neural regulation of cardiovascular function. Prog Biophys Mol Biol. 2004; 84(2-3):125-149.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內一年後公開,校外永不公開 campus withheld
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.138.69.45
論文開放下載的時間是 校外不公開

Your IP address is 3.138.69.45
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code