Responsive image
博碩士論文 etd-0806110-155105 詳細資訊
Title page for etd-0806110-155105
論文名稱
Title
磷酸鋰鐵電池高頻放電特性之研究
High Frequency Discharging Characteristics of LiFePO4 Battery
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
77
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-19
繳交日期
Date of Submission
2010-08-06
關鍵字
Keywords
梯形波、鋸齒波、三角波、磷酸鋰鐵電池、高頻放電
trapezoidal wave, triangle wave, saw-tooth wave, lithium iron phosphate battery, High frequency discharging
統計
Statistics
本論文已被瀏覽 5701 次,被下載 3563
The thesis/dissertation has been browsed 5701 times, has been downloaded 3563 times.
中文摘要
本文針對磷酸鋰鐵電池進行高頻放電特性之研究,探討磷酸鋰鐵電池搭配高頻轉換器時,不同電流波形及頻率對電池釋出電量的影響。研究內容包括轉換器自電池汲取之電流最常見的三角波、鋸齒波及梯形波。
實驗結果發現在相同平均電流下,操作頻率越高或瞬間電流斜率較大時,會有較大的內損耗。此外,轉換器開關截止時所產生的共振回充電流也會使釋出電量減少。最後本文嘗試以電池等效模型解釋電池釋出電量減少之原因。
Abstract
This thesis investigates the high frequency discharging characteristics of the lithium iron phosphate battery. The investigation focuses on effects of the high-frequency current on the dischargeable capacity of the battery. Included are the current profiles of triangle, saw-tooth, and trapezoidal waves, which are produced from commonly used DC-DC converters.
Experimental results show that the current with the higher frequency has less dischargeable capacity. On the other hand, the converter current resonating into and out from the battery results the additional losses. The possible reasons that affect the discharged capacities are explained by the equivalent circuit of the battery.
目次 Table of Contents
中文摘要 I
英文摘要 II
目錄 III
圖表目錄 V
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機 2
1-3 論文大綱 3
第二章 磷酸鋰鐵電池特性及高頻放電架構 4
2-1 磷酸鋰鐵電池簡介及化學反應 4
2-2 磷酸鋰鐵電池放電特性 6
2-3 高頻放電架構及量測系統 8
2-4 高頻放電電路參數設計 12
2-4-1 三角波放電電路之參數設計 13
2-4-2 梯形波放電電路之參數設計 14
2-4-3 鋸齒波放電電路之參數設計 14
第三章 放電電流頻率對釋出電量之影響 16
3-1 放電電流頻率及頻率間隔選定 16
3-2 三角波 17
3-2-1相同參數升壓轉換器 17
3-2-2相同漣波大小下放電頻率對釋出電量之影響 24
3-3 梯形波 30
3-4 鋸齒波 37
第四章 高頻放電電流波形釋出電量之比較 44
4-1 共振回充電流對電池高頻放電之影響 44
4-1-1 梯形波 44
4-1-2 鋸齒波 48
4-2 操作於相同頻率下不同波形之比較 52
4-2-1 操作於100 kHz下不同波形之比較 52
4-2-2 操作於300 kHz下不同波形之比較 56
4-2-3 操作於500 kHz下不同波形之比較 59
4-3 放電電流頻率及波形對磷酸鋰鐵電池釋出電量影響之探討 63
第五章 結論與未來研究方向 66
參考文獻 68
參考文獻 References
[1] C. C. Chan and K. T. Chau, “An overview of electric vehicles-challenges and opportunities,” in Proc. IECON, August 1996, vol. 1, pp. 1-6.
[2] H. Oman, “Battery developments that will make electric vehicles practical,” IEEE Aerosp. Electron. Syst. Mag., vol. 15, no. 8, pp.11-21, August 2000.
[3] H. Oman, “Making batteries last longer,” IEEE Aerosp. Electron. Syst. Mag., vol. 14, no. 9, pp. 19-21, September 1999.
[4] C. C. Chan, “An overview of electric vehicle technology,” Proceedings of the IEEE, vol. 81, no. 9, pp. 1202-1213, September 1993.
[5] D. Berndt, “Valve-regulated lead-acid batteries,” J. Power Source, vol. 95, no. 1-2, pp. 2-12, March 2001.
[6] R. Spotnitz, “Advanced EV and HEV batteries,” in Proc. IEEE VPPC, September 2005, pp. 334-337.
[7] F. P. Tredeau and Z. M. Salameh, “Evaluation of lithium iron phosphate batteries for electric vehicles application,” in Proc. IEEE VPPC, September 2009, pp.1266-1270.
[8] P. A. Cassani and S. S. Williamson, “Feasibility analysis of a novel cell equalizer topology for plug-in hybrid electric vehicle energy-storage systems,” IEEE Trans. Veh. Technol., vol. 58, no. 8, pp. 3938-3946, September 2009.
[9] K. Kotaich and S. E. Sloop, “Cobalt-free batteries, a new frontier for advanced battery recycling,” in Proc. IEEE ISSST, May 2009, pp.1-1.
[10] J. McDowall, “Conventional battery technologies-present and future,” in Proc. IEEE PESS, July 2000, vol. 3, pp. 1538-1540.
[11] C. W. Seitz, “Industrial battery technologies and markets,” in Proc. IEEE AESM, May 1994, vol. 9, no. 5, pp. 10-15.
[12] L. Benini, D. Bruni, A. Macii, E. Macii, and M. Poncino, “Discharge current steering for battery lifetime optimization,” IEEE Trans. Computer, vol. 52, no. 8, pp. 985-995, August 2003.
[13] L. Benini, A. Macii, E. Macii, M. Poncino, and R. Scarsi, “Scheduling battery usage in mobile systems,” IEEE Trans. VLSI, vol. 11, no. 6, pp. 1136-1143, December 2003.
[14] K. S. Ng, C. S. Moo, Y. C. Lin, and Y. C. Hsieh, “Investigation on intermittent discharging for lead-acid batteries,” in Proc. IEEE PESC, June 2008, pp. 4683-4688.
[15] 林昱超,“鉛酸電池之間歇放電暫態態樣研究”,國立中山大學電機工程研究所碩士論文,2007年6月。
[16] M. Dubarry, V. Svoboda, R. Hwa, and B.Y. Liaw, “Capacity loss in rechargeable lithium cells during cycle life testing: The importance of determining state-of-charge,” J. Power Sources, vol. 174, no. 2, pp. 1121-1125, December 2007.
[17] Y. C. Hsieh, W. C. Chen, K. S. Ng, and C. S. Moo, “Investigation on operating characteristics of individual cells in a lead-acid battery pack,” in Proc. PCC, April 2007, pp. 745-750.
[18] “二次電池比較表”,台灣立凱電能科技股分有限公司。
[19] 梁適安,“交換式電源供給器之理論與實務設計”,全華書局,2001年12月,第一版。
[20] M. H. Rashid. Power electronics-circuits, devices, and applications. The 3rd edition, Prentice-Hall International, 1988.
[21] F. L. Luo and H. Ye, “Positive output cascade boost converters,” IET Proc. Electric Power Appl., vol. 151, no. 5, pp. 590-606, September 2004.
[22] 吳宇平,戴曉兵,馬軍旗,程預江,“鋰離子電池-應用與實踐”,化學工業出版社,2004年3月,第一版。
[23] R. M. Spotnitz, “AC impedance simulation for lithium-ion cells,” in Proc. IEEE BCAA, January 2000, pp. 121-126.
[24] M. Dubarry, N. Vuillaume, and B. Y. Liaw, “From Li-ion single cell model to battery pack simulation,” in Proc. IEEE CCA, September 2008, pp. 708-713.
[25] M. Dubarry and B.Y. Liaw, “Development of a universal modeling tool for rechargeable lithium batteries,” J. Power Sources, vol. 174, no. 2, pp. 856-860, December 2007.
[26] S. Buller, M. Thele, R. W. De Doncker, and E. Karden, “Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications,” in Proc. IEEE IAS, October 2003, vol. 3, pp. 1596-1600.
[27] M. Chen, Z. Zhang, Z. Feng, J. J. Chen, and Z. Qian, “An improved control strategy for the charge equalization equalization of lithium ion battery,” in Proc. IEEE APEC, February 2009, pp. 186-189.
[28] G. Nagasubramanian, “Impedance studies on cathodes in Li-ion cells,” in Proc. IEEE IECEC, July 2000, vol. 2, pp. 968-975.
[29] M. J. Isaacson, N. A. Torigoe, and R. P. Hollandsworth, “A pseudo-theoretical model for a Li-ion cell,” in Proc. IEEE BCAA, January 1998, pp. 243-246.
[30] 黃廣順,“電池電源模組織架構與運轉”,國立中山大學電機工程研究所博士論文,2009年6月。
[31] J. Giancaterino, “Application considerations for multiple battery disconnects,” in Proc. IEEE INTELEC, September 2000, pp. 765-770.
[32] M. J. Isaacson, M. E. Daman, and R. P. Hollandsworth, “Li-ion batteries for space applications,” in Proc. IEEE IECEC, July 1997, vol. 1, pp. 31-34.
[33] S. B. Han, M. L. Jeong, S. M. Hyung, and H. C. Gyu, “Load sharing improvement in parallel-operated lead acid batteries,” in Proc. IEEE ISIE, January 2001, vol. 2, pp. 1026-1031.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外完全公開 unrestricted
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code