Responsive image
博碩士論文 etd-0806110-170840 詳細資訊
Title page for etd-0806110-170840
論文名稱
Title
氧化鋅奈米針與二氧化鈦異質接面光觸媒之研究
Photocatalyses of Zinc Oxide Nanotip/Titanium Oxide Film Heterojunctions
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
115
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2010-07-09
繳交日期
Date of Submission
2010-08-06
關鍵字
Keywords
光觸媒能力、異質接面、氧化鋅奈米針、二氧化鈦
Heterojunction, Photocatalytic activity, TiO2, ZnO nanotip
統計
Statistics
本論文已被瀏覽 5623 次,被下載 0
The thesis/dissertation has been browsed 5623 times, has been downloaded 0 times.
中文摘要
氧化鋅奈米針(ZnO nanotip)的長度可以靠時間來控制,以及氧化鋅奈米針在300 oC氧氣回火中有最強的結晶性,二氧化鈦(TiO2)薄膜厚度亦可由時間來控制。
本實驗研究方向分為:
1:二氧化鈦膜厚控制與氧化鋅奈米針生長長度控制與兩者之光觸媒(Photocatalyses)能力。
2:二氧化鈦粉末(P25)與薄膜狀態的光觸媒能力比較,量測光觸媒能力是否與表面積有關。
3:利用氧化鋅奈米針/二氧化鈦薄膜與二氧化鈦薄膜/氧化鋅奈米針異質接面(Heterojunctions)來增加其光觸媒能力,本實驗所有測量都以二氧化鈦粉末作為基準來比較。
Abstract
The length of ZnO nanotip can be controlled by the deposition time, and the crystal of ZnO nanotip can be enhanced by a thermal annealing at 300oC in this study.The thickness of TiO2 on ITO/glass also can be controlled by the deposition time in this investigate.
There are three major parts in this study :
1. (1). The control of thickness of TiO2 film and length of ZnO nanotip and (2). the difference of their photocatalytic activities are two major parts.
2. The relationship between the surface area and the photocatalytic activities of TiO2 powder (P25) and film.
3. The improvement of photocatalytic activity was utilized by the hetrojunction of ZnO nanotip/TiO2 and TiO2/ZnO nanotip, and the P25 is used as a reference for all measurements.
目次 Table of Contents
Chapter 1 16
Introduction 16
1.1 Background 16
1.2 Photocatalysis 17
1.3 Semiconductor Photocatalysis 18
1.4 Mechanism of Photocatalysis 19
1.5 Properties of TiO2 and Applications 20
1.6 Properties of ZnO and Applications 21
1.6.1 Optoelectronics: 22
1.6.2 Transparent Conductive Film: 23
1.7 Preparations of TiO2 24
1.8 Synthesis of ZnO nanotip 25
1.9 Advantages of aqueous solution Deposition (ASD) 26
1.10 Problem of photocatalytic activity 26
1.11 Motivations of Heterojunction 27
References 33
Chapter 2 44
Experiments 44
2.1 Substrate Cleaning Procedures 44
2.2 ZnO buffer layer and TiO2 thin film prepared by RF Sputtering 45
2.2.1 Sputtering mechanism 45
2.2.2 RF Sputtering 46
2.2.3 ZnO buffer layer prepared with ZnO target by RF Sputtering 46
2.2.3 TiO2 thin film prepared with TiO2 target by RF Sputtering 47
2.3 Preparation of Aqueous Solution Deposition (ASD) 47
2.3.1 Process of ASD-ZnO nanotip 48
2.3.2Basic Mechanism 48
2.4 Aqueous Solution Deposition System 50
2.4.1 Preparation of ASD-TiO2 50
2.4.1 Preparation of (NH4)2TiF6 Solution 50
2.4.2 Preparation of H3BO3 Solution 50
2.4.3 Film Deposition 51
2.4.4 Growth Mechanisms of ASD-TiO2 thin film 51
2.5 Preparation of TiO2 porous layer 52
2.6 Characterization Techniques of Physical and Chemical 52
2.6.1 Morphology-Scanning electron microscopy: 53
2.6.2 Structure X-ray diffraction : 54
2.6.3 Optical property-micro Photoluminescence (μ-PL) : 54
2.6.4 Atomic Force Microscopy (AFM) 56
2.6.5 Fourier-transform infrared spectrometer : 57
2.6.6 Utraviolet-Visible (UV-Vis) transmittance spectrum : 57
2.7 Photocatalytic Activity 58
2.8 Main measurement of Photocatalytic Activity 58
References 69
Chapter 3 71
Result and Discussion 71
3.1 The characteristics and photocatalytic activity of ASD-TiO2 film, sputtered TiO2 film and spin coating P25 on poly ITO/glass substrate 72
3.1.1 ASD-TiO2 Film on ITO/glass Substrate 72
3.1.2 The relationship between thickness and deposition time of ASD-TiO2 films 73
3.1.2 XRD Patterns of ASD-TiO2 Films by O2 Annealing 76
3.1.3 Micro PL and XRD intensity of P25 sintered in air and ASD-TiO2 with annealing treatment in O2 77
3.2 The characteristics and photocatalytic activity of ASD-ZnO nanotip / ZnO buffer layer on poly ITO/glass substrate 85
3.2.1 ZnO Buffer layer 85
3.2.2 The length ASD-ZnO nanotip as a function of deposition time 88
3.2.3 Micro PL and XRD 91
3.2.4 Photocatalytic activity measurement of transmittance of ASD-ZnO nanotip 95
3.3 The characteristics and photocatalytic activity of ASD-TiO2 film, sputtered TiO2 film and spin coating P25 on ASD-ZnO nanotip / ZnO buffer layer on poly ITO/glass substrate 96
3.3.1 Characteristics of SEM and XRD of ASD-TiO2 film, sputtered TiO2 film and spin coating P25 on ASD-ZnO nanotip 96
3.3.2 Photocatalytic activity measurement of transmittance of ASD-TiO2 film, sputtered TiO2 film and spin coating P25 on ASD-ZnO nanotip for 4 hr. and 24 hr.. 102
3.4 The characteristics and photocatalytic activity of ASD-ZnO nanotip / ZnO buffer layer on ASD-TiO2 film, sputtered TiO2 film and spin coating P25 on poly ITO/glass substrate 106
3.4.1 Characteristics of SEM and XRD of ASD-TiO2 film, sputtered TiO2 film and spin coating P25 on ASD-ZnO nanotip 106
3.3.3 Photocatalytic activity measurement of transmittance of ASD-ZnO nanotip for 4 hr. and 24 hr. on ASD-TiO2 film, sputtered TiO2 film and spin coating P25. 110
References 114
Chapter 4 115
Conclusions 115
參考文獻 References
[1] Y. V. Pleskov and Y. Y. Gurevich, in Semiconductor Photoelectrochemistry, Consultants Bureau, (New York and London, 1968), pp. 1-35.
[2] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38, 1972.
[3] J. H. Carey, J. Lawrence, and H. M. Tosine, “Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension,”
[4] R. E. Marinangeli and D. F. Ollis, “Photo-assisted heterogeneous catalysis with optical fibers (I): Isolated single fiber,” AIChE J., vol. 23-4, pp. 415-426, 1977.
[5] R. E. Marinangeli and D. F. Ollis “Photo-assisted heterogeneous catalysis with optical fibers (II): Nonisothermal single fiber and fiber bundle,” AIChE J., vol. 26-6, pp. 1000-1008, 1980.
[6] D. Y. Goswami, “A review of engineering developments of aqueous phase solar photocatalytic detoxification and disinfection process,” J. Solar Energy Eng., vol. 119, pp. 101-107, 1997.
[7] D. F. Ollis, in Solar Assisted Photocatalysis for Water Purification (Kluwer Academic, Dordrecht, The Netherlands, 1991), pp. 593-622.
[8] D. Y. Goswami and D. M. Blake, “Cleaning up with Sunshine,” Mech. Eng., vol. 118-8, pp. 56-59, 1996.
[9] M. S. Mehos and C. S. Turchi, “Field testing solar photocatalytic detoxification on TCE-contaminated groundwater,” Environ. Prog., vol. 12, pp. 194-199, 1993
[10] M. R. Prairie, L. R. Evans, and B. M. Stange, “An investigation of TiO2 photocatalysis for the treatment of water contaminated with metals and organic chemicals,” Environ. Sci. Tech., vol. 27-9, pp. 1776-1782, 1993.
[11] D. Bockelmann, D. Weichgreb, R. Goslich, and D. Bahnemann, “Concentrating versus non-concentrating reactors for solar water detoxification,” Solar Energy Materials and Solar Cells, vol. 38, pp. 441-451, 1995.
[12] J. C. Crittenden, Y. Zhang, and D. W. Hand, “Sun fuels groundwater remediation,” Wat. Environ. Tech., vol. 7, no. 2, pp. 15-16, 1995.
[13] J. B. Farrell, “Discussion of solar detoxification of fuel-contaminated groundwater using fixed-bed photocatalysts,” Wat. Environ. Res , vol. 69, p. 254, 1997.
[14] J. A. Herrera, J. M. Dona, A. Viera, E. Tello, C. Valdes, J. Arana, and J. Perez, “The photocatalytic disinfection of urban waste waters,” Chemosphere, vol. 41, no. 3, pp. 323-327, 2000.
[15] I. R. Bellobono, A. Carrara, B. Barni, and A. Gazzotti, “Laboratory- and pilot-plant-scale photodegradation of chloroaliphatics in aqueous solution by photocatalytic membranes immobilizing titanium dioxide,” J. Photochem. Photob. A: Chem., vol. 84, no. 1, pp. 83-90, 1994.
[16] D. F. Ollis, E. Pelizzetti and N. Serpone, “Photocatalyzed destruction of water contaminants,” Enviro. Sci. Tech., vol. 25, no. 9, pp. 1523-1529, 1991.
[17] N. Serpone, in Solar Photochemistry and Heterogeneous Photocatalysis : A Convenient and Practical Utilization of Sunlight Photons (Elesevier, Amsterdam, 1989), pp. 297-315.
[18] E. Pelizzetti, V. Maurino, and C. Minero, “Photocatalytic degradation of atrazine and other s-triazine herbicides,” Environ. Sci. Tech., vol. 24, no. 10, pp. 1559-1565, 1990.
[19] H. Kisch, in Photocatalysis Fundamentals and Applications (Willey, 1989), pp. 1-8.
[20] A. Salinaro, A. V. Emeline, and J. Zhao, “Terminology, relative photonic efficiencies and quantum yields in heterogeneous photocatalysis. Part II: experimental determination of quantum yields,’ Pure Appl. Chem., vol. 71, no. 2, pp. 321-335, 1999.
[21] N. Serpone, A. Salinaro, A. Emeline, and V. Ryachuk, “Turnovers and photocatalysis: A mathematical description,” J. Photochem. Photob. A: Chem., vol. 130, no. 2-3, pp. 83-94, 2000.
[22] N. J. Serpone, “Relative photonic efficiencies and quantum yields in heterogeneous photocatalysis,” Photochem. Photobiol. A: Chem., vol. 104, no. 1-3, pp. 1-12, 1997.
[23] M. S. Arredondo, Faculty of Graduate Studies, The University of Western Ontario, London, Ontario, 2002.
[24] M. Grztxel, “Photoelectrochemical cells,” Nature, vol. 414, pp. 338-344, 2001.
[25] M. Barbeni, E. Pramauro, E. Pelizzetti, E. Borgarello, and N. Serpone, “Photodegradation of pentachlorophenol catalyzed by semiconductor particles,” Chemosphere, vol. 14, no. 2, pp. 195-208, 1985.
[26] J. M. Herrmann, C. Guillard, and P. Pichat, “Heterogeneous photocatalysis: an emerging technology for water treatment,” Catalysis Today, vol. 17, pp. 7-20, 1993.
[27] M. A. Fox and M. T. Dulay, “Heterogeneous photocatalysis,” Chem. Rev., vol. 93, pp. 341-357, 1993.
[28] M. R. Hoffmann, S. T. Martin, W. Choi and D. Bahnemann, “Environmental applications of semiconductor photocatalysis,” Chem. Rev., vol. 95, pp. 69-96, 1995.
[29] A. Aharoni, in Introduction to the Theory of Ferromagnetism (Oxford Univ. Press, New York, 1996).
[30] J. P. Rino and N. Studart, “Structural correlations in titanium dioxide,” Phys. Rev. B, vol. 59, no. 10, pp. 6643-6649, 1999.
[31] M. H. Ronald and J. F. Robert, in Catalytic Air Pollution Control – Commercial Technology, (International Thomson Publishing Inc., New York, 1995), p. 15.
[32] J. H. Braun, A. Baidins, and R. E. Marganski, “TiO2 pigment technology: A review,” Pro.Org. Coat., vol. 20, no. 2, pp. 105-138, 1992.
[33] A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, vol. 238, pp. 37-38, 1972.
[34] H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD),” J. Mater. Chem., vol. 8, no. 9, pp. 2019-2024, 1998.
[35] L. M. Doeswijk, H. H. C. de Moor, D. H. A. Blank, and H. Rogalla, “Passivating TiO2 coatings for silicon solar cells by pulsed laser deposition,” Appl. Phys. A, vol. 69, pp. s409-s411, 1999.
[36] V. Kiisk, I. Sildos , O. Sild, and J. Aarik, “The influence of a waveguiding structure on the excitonic luminescence of anatase thin films,” Optical Materials, vol. 27, no. 1, pp. 115-118, 2004.
[37] S. A. Campbell, D. C. Gilmer, X. C. Wang, M. T. Hsieh, H. S. Kim, W. L. Gladfelter, and J. Yan, “MOSFET transistors fabricated with high permitivity TiO2 dielectrics,” IEEE Trans. Electron Devices, vol. 44, no. 1, pp. 104-109, 1997.
[38] G. P. Burns, I. S. Bladwin, M. P. Hastings, and J. G. Wilkes, “The plasma oxidation of titanium thin films to form dielectric layers,” J. Appl. Phys., vol. 66, no. 6, pp. 2320-2324, 1989.
[39] S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, and T. Steiner, J. Vac. Sci. Technol. B, vol. 22, no. 3, pp. 932-948, 2004.
[40] A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Mater., vol. 4, no. 1, pp. 42-46, 2005.
[41] M.-C. Jeong, B.-Y. Oh, M.-H. Ham, S.-W. Lee, and J.-M. Myoung, “ZnO-nanowire-inserted GaN/ZnO heterojunction light-emitting diodes,” Small, vol. 3, no. 4, pp. 568-572, 2007.
[42] J. Bao, M. A. Zimmer, F. Capasso, X. Wang, and Z. F. Ren, “Broadband ZnO single-nanowire light-emitting diode,” Nano Lett., vol. 6, no. 8, pp. 1719-1722, 2006.
[43] R. Könenkamp, R. C. Word, and C. Schlegel, “Vertical nanowire light-emitting diode,” Appl. Phys.Lett., vol. 85, no. 24, pp. 6004-6006, 2004.
[44] L. Gangloff, E. Minoux, K. B. K. Teo, P. Vincent, V. T. Semet, V. T. Binh, M. H. Yang, I. Y. Y. Bu, r. G. Lacerda, G. Pirio, J. P. Schnell, D. Pribat, D. G. Hasko, G. A. J. Amaratunga, W. I. Milne, and P. Legagneux, “Self-aligned, gated arrays of individual nanotube and nanowire emitters,” Nano Lett., vol. 4, no. 9, pp. 1575-1579, 2004.
[45] H. K. Yadav, K. Sreenivas, and V. Gupta, “Enhanced response from metal/ZnO bilayer ultraviolet photodetector,” Appl. Phys. Lett., vol. 90, no. 17, pp. 172113, 2007.
[46] R. Ghosh and D. Basak, “Electrical and ultraviolet photoresponse properties of quasialigned ZnO nanowires/p-Si heterojunction,” Appl.Phys. Lett., vol. 90, no. 24, pp. 243106, 2007.
[47] S. Seki, Y. Sawaka, and T. Nishide, ”Indium-tin-oxide thin films prepared by dip-coating of indium diacetate monohydroxide and tin dichloride,” Thin Solid Films, vol. 388, no. 1-2, pp. 22-26, 2001.
[48] J. Cui, A. Wang, N. L. Edleman, J. Ni, P. Lee, N. R. Armstrong, and T. J. Marks, “Indium tin oxidealternatives – high work function transparent conducting oxides as anodes for organic light-emitting diodes,” Adv. Mater., vol. 13, no. 19, pp. 1476-1480, 2001.
[49] J. Owen, M. S. Son, K.-H. Yoo, B. D. Ahn, and S. Y. Lee, “Organic photovoltaic devices with Ga-doped ZnO electrode,” Appl. Phys. Lett., vol. 90, no. 3, pp. 033512, 2007.
[50] B.-Y. Oh, M.-C. Jeong, T.-H. Moon, W. Lee, J.-M. Myoung, J.-Y.Hwang, and D.-S. Seo,12 “Transparent conductive Al-dped ZnO films for liquid crystal displays,” J. Appl. Phys., vol. 99, no. 12, pp. 124505, 2006.
[51] Ilan Shalish, Henryk Temkin, and Venkatesh Narayanamurti, Size-dependent surface luminescence in ZnO nanowires, PHYSICAL REVIEW B 69, 245401 (2004)
[52] G. San Vicente, A. Morales, and M. T. Gutierrez, “Preparation and characterization of sol-gel TiO2 antireflective coatings for silicon,” Thin Solid Films, vol. 391, pp. 133-137, 2001.
[53] J. V. Grahn, M. Linder, and E. Fredriksson, “In situ growth of evaporated TiO2 thin films using oxygen radicals: Effect of deposition temperature,” J. Vac. Sci. Technol. A, vol. 16, no. 4, pp. 2495-2500, 1998.
[54] R. Dannenberg and P. Greene, “Reactive sputter deposition of titanium dioxide,” Thin Solid Films, vol. 360, pp. 122-127, 2000.
[55] K. S. Yeung and Y. W. Lam, “Simple chemical vapor deposition method for depositing thin TiO2 films,” Thin Solid Films, vol. 109, no. 2, pp. 169-178, 1983.
[56] G. A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, and G. A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, vol. 371, pp. 126-131, 2000.
[57] H. S. Kim, D. C. Gilmer, S. A. Campbell, and D. L. Polla, “Titanium dioxide films prepared by photo-induced sol-gel processing using 172 nm excimer lamps,” Appl. Phys. Lett., vol. 69, no. 25, pp. 3860-3862, 1996.
[58] Y. Gao and S. A. Chambers, “MEB growth and characterization of TiO2 and Nb-doped TiO2 films,” Mater. Lett., vol. 26, no. 4-5, pp. 217-221, 1996.
[59] H. Nagayama, H. Honda, and H. Kawahara, “A new process for silica coating ,” J. Electrochem. Soc., vol. 135, pp. 2013-2016, 1988.
[60] C. F. Yeh, S. S. Lin, and T. Y. Hong, “Low-temperature processed MOSFETs with liquid phase deposited SiO2-xFx as gate insulator,” IEEE Electron Device Lett., vol. 16, no. 7, pp. 316-318, 1995.
[61] C. F. Yeh, S. S. Lin, C. L. Chen, and Y. C. Yang, “Novel technique for SiO2 formed by liquid-phase deposition for low-temperature processed polysilicon TFT,” IEEE Electron Device Lett., vol. 14, no. 8, pp. 403-405, 1993.
[62] S. Deki, Y. Aoi, O. Hiroi, and A. Kajinami, “Titanium (IV) oxide thin films prepared from aqueous solution,” Chem. Lett., vol. 17, pp. 433-434, 1996.
[63] H. Kishimoto, K. Takahama, N. Hashimoto, Y. Aoi, and S. Deki, “Photocatalytic activity of titanium oxide prepared by liquid phase deposition (LPD),” J. Mater. Chem., vol. 8, no. 9, pp. 2019-2024, 1998.
[64] R. F. Service, “Will UV Lasers Beat the Blues?” Science, vol. 276, no. 5314, p. 895, 1997.
[65] B. J. Ingram, G. B. Gonzalez, D. R. Kammler, M. I. Bertoni, and T. O. Mason, “Chemical and structural factors governing transparent conductivity in oxides,” J. Electroceram., vol. 13, no. 1-3, pp. 167-175, 2004.
[66] D. Li and H. Haneda, “Synthesis of nitrogen-containing ZnO powders by spray pyrolysis and their visible-light photocatalysis in gas-phase acetaldehyde decomposition,” J. Photchem. Photobio A, vol. 155, no. 1-2, pp. 171-178, 2003.
[67] J. L. Yang, S. J. An, W. I. Park, G. C. Yi, and W. Choi, “Photocatalysis using ZnO thin films and nanoneedles grown by metal-organic chemical vapor deposition,” Adv. Mater., vol. 16, no. 18, pp. 1661-1664, 2004.
[68] Zhiyong Fan, Deepanshu Dutta, Chung-Jen Chien, Hsiang-Yu Chen, and Evan C. Brown, Electrical and photoconductive properties of vertical ZnO nanowires in high density arrays, APPLIED PHYSICS LETTERS 89, 213110 2006
[69] Wei Chen, Xiaoming Tao, Yuyang Liu, Xiaohong Sun, Zhigang Hu, Bin Fei, Applied Surface Science 252 (2006) 8683–8687
[70] Seu Yi Li, Chia Ying Lee, Tseung Yuen Tseng, Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor–liquid–solid process, Journal of Crystal Growth 247 (2003) 357–362
[71] Hao-Ying Lu, Sheng-Yuan Chu, Sheng-Hsien Cheng, The vibration and photoluminescence properties of one-dimensional ZnO nanowires, Journal of Crystal Growth 274 (2005) 506–511
[72] Xianghua Kong, Xiaoming Sun, Xiaolin Li, Yadong Li, Catalytic growth of ZnO nanotubes, Materials Chemistry and Physics 82 (2003) 997–1001
[73] Sungyeon Kim, Min-Chang Jeong, Byeong-Yun Oh, Woong Lee, Jae-Min Myoung, Fabrication of Zn/ZnO nanocables through thermal oxidation of Zn nanowires grown by RF magnetron sputtering, Journal of Crystal Growth 290 (2006) 485–489
[74] Wen-Ting Chiou, Wan-Yu Wu, Jyh-Ming Ting, Growth of single crystal ZnO nanowires using sputter deposition, Diamond and Related Materials 12 (2003) 1841–1844
[75] Dong Chan Kim, Bo Hyun Kong, Hyung Koun Cho, Dong Jun Park and Jeong Yong Lee, Effects of buffer layer thickness on growth and properties of ZnO nanorods grown by metalorganic chemical vapour deposition, Nanotechnology 18 (2007) 015603 (6pp)
[76] Ying He, Wenbin Sang, Jun’an Wang, Ruofeng Wu, Jiahua Min, Vertically well-aligned ZnO nanowires generated with self-assembling polymers, Materials Chemistry and Physics 94 (2005) 29–33
[77] Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’ol, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-drivenammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
[78] S. Music, S. Popovic, M. Maljkovic, D. Dragcevic, Influence of synthesis procedure on the formation and properties of zinc oxide, Journal of Alloys and Compounds 347 (2002) 324–332
[79] Y. Bessekhouad, D. Robert, and J. V. Weber, “Photocatalytic activity of Cu2O/TiO2, Bi2O3/TiO2 and ZnMn2O4/TiO2 heterojunctions,” Catalysis Today, vol. 101, pp. 315-321, 2005.
[80] K. Rajeshwar, N. R. De Tacconi, and C. R. Chenthamarakshan, “Semiconductor-based composite materials: preparation, properties, and performance,” Chem. Mater., vol. 13, pp. 2765-2782, 2001.
[81] Y. Ma, J. B. Qiu, Y. A. Cao, Z. S. Guna, and J. N. Yao, “Photocatalytic activity of TiO2 films grown on different substrates,” Chemosphere, vol. 44, no. 5, pp. 1087-1092, 2001.
[82] R. K. Pandey, S. N. Sahu, and S. Chandra, in Handbook of Semiconductor Electrodeposition (New York Marcel Dekker, 1996), ch. 7, pp. 205-238.
[83] T. Deguchi, K. Imai, and M. Iwasaki, “Photocatalyrically highly active nanocomposite films consisting of TiO2 particle,” J. Electrochem. Society., vol. 147, pp. 2263-2267, 2000.
[84] Y. T. Kwon, K. Y. Song, and W. Lee, “Photocatalytic behavior of WO3-loaded TiO2 in an oxidation reaction,” J. Cat., 2000, vol. 191, no. 1, pp. 192-199.
[85] S. Deki, T. Aoi, O. Hiroi, and A. Kajinami, “A novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Chem., vol. 32, pp. 4269-4273, 1997.
[86] Zhuo Wang, Xue-feng Qian,_ Jie Yin, and Zi-kangZhu, Aqueous solution fabrication of large-scale arrayed obelisk-like zinc oxide nanorods with high efficiency, Journal of Solid State Chemistry 177 (2004) 2144–2149
[87] Youngjo Tak and Kijung Yong, Controlled Growth of Well-Aligned ZnO Nanorod Array Using a Novel Solution Method, J. Phys. Chem. B 2005, 109, 19263-19269
[88] Jean-Franc-ois Hochepied, Ana Paula Almeida de Oliveira, Ve’ronique Guyot-Ferre’o, Jean-Franc-ois Tranchant, Zinc oxide pompom-like particles from temperature-driven ammonia decomplexation, Journal of Crystal Growth 283 (2005) 156–162
[89] S. Deki, T. Aoi, O. Hiroi, and A. Kajinami, “A novel wet process for the preparation of vanadium dioxide thin film,” J. Mater. Chem., vol. 32, pp. 4269-4273, 1997.
[90] J. Li, M. Tammer, F. Kremer, A. Komp, and H. Finkelmann, “Strain-induced reorientation and mobility in nematic liquid-crystalline elastomers as studied by time-resolved FTIR spectroscopy,” Eur. Phys. J. E, vol. 17, no. 4, pp. 423-428, 2005.
[91] R. Brause, H. Möltgen, and K. Kleinermanns, “Characterization of laser-ablated and chemically reduced silver colloids in aqueous solution by UV/VIS spectroscopy and STM/SEM microscopy,” Appl. Phys. B, vol. 75, no. 6-7, pp. 711-716, 2002.
[92] J. Goldstein, D. Newbury, D. joy, C. Lyman, P. Echlin, E. Lifshin, L. Sawyer, and J. Michael, scanning electron microscopy and X-ray microanalysis
[93] B. D. Cullity, S. R. Stock, in Elements of X-ray diffraction, (Prentice Hall, Third Edition 2001), ch. 5, p. 170.
[94] M. Geiger, A. Bauknecht, F. Adler, H. Schweizer, and F. Scholz, “Observation of the 2D-3D growth mode transition in the InAs/GaAs system,” J. Cryst. Growth, vol. 170, pp. 558-562, 1997.
[95] C. H. Chen, E. M. Kelder, and J. Schoonman, “Electrostatic sol-spray deposition (ESSD) and characterization of nanostructured TiO2 thin films,” Thin Solid Films, vol. 342, pp. 35-41, 1999.
[96] H. Yoneyama, Y. Yoyoguchi, and H. Tamura, “Quasirandom spanning tree model for the early river network,” J. Phys. Chem., vol. 76, no. 18, pp. 3460-3463, 1972.
[97] G. Q. Lo, W. C. Ting, D. K. Shih, and D. L. Kwong, “Study of Interface State Generation in Thin Oxynitride Gate Dielectrics Under Hot-Electron Stressing”, Electron. Lett., vol. 25, pp. 1354, 1989.
[98] M. K. Lee, W. H Shieh, C. M Shih, K. W Tung, “High-quality nitrogen-doped fluorinated silicon oxide films prepared by temperature-difference-based liquid-phase deposition”J. Phys. Chem. B, vol. 107, pp. 12700-12704, 2003
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:校內校外均不公開 not available
開放時間 Available:
校內 Campus:永不公開 not available
校外 Off-campus:永不公開 not available

您的 IP(校外) 位址是 3.15.3.154
論文開放下載的時間是 校外不公開

Your IP address is 3.15.3.154
This thesis will be available to you on Indicate off-campus access is not available.

紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code