Responsive image
博碩士論文 etd-0806112-154132 詳細資訊
Title page for etd-0806112-154132
論文名稱
Title
具立體規則性高分子光致發光行為之研究
Photoluminescence of Stereoregular Polymers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
139
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2011-07-06
繳交日期
Date of Submission
2012-08-06
關鍵字
Keywords
薄膜、光致放光、高分子、規則度、立體規則性
thin film, regularity, tacticity, Photoluminescence, Polymer
統計
Statistics
本論文已被瀏覽 5727 次,被下載 141
The thesis/dissertation has been browsed 5727 times, has been downloaded 141 times.
中文摘要
本研究藉由控制PNNDPS和PNNEPS的立體規則性來探討高分子立體規則性對光致放光行為的影響。此外,調控不同的高分子規則性和化學官能基的修飾也將會被探討其現象。當巨大的三苯胺小分子被接在高分子的側鍊上時會增加螢光放色團之間立體障礙導致其增加光致放光的強度,且伴隨著紅位移的現象。
在溶液中,藉由生命週期螢光儀來證明其具不同立體規則性之高分子包含單體放光和聚集放光。藉由模擬分析,相較於sPNNDPS23,這些巨大的三苯胺被接枝在iPNNDPS17高分子上會具有較大的立體障礙是由於其高分子具不同立體規則性的關係。因此,iPNNDPS17會比sPNNDPS23具有較強的光致放光的強度,是由於其有效的限制其分子內的轉動,而此現象也對溫度的改變非常敏銳。相較於sPNNDPS23 ,sPNNDPS2具有較強的光致放光強度是由於當規則性增加時會降低其溶解度。sPNNEPS17光致放光的強度比aPNNEPS8還來得強是由於其螢光放色團上乙基的修飾所導致的。在sPNNDPS23和 sPNNDPS2的溶液中,藉由加入水讓這些高分子產生聚集,其光致放光的強度隨著水比例增加而減少是由於形成H態堆疊形式的聚集導致其能量消耗。相較於iPNNDPS17,其隨著水比例增加,光致放光地的強度先減後增是由於π-π作用力和限制其分子內轉動作用力相互競爭所導致。sPNNEPS也是隨著水比例增加而減少,而aPNNEPS8並不會隨著水比例增加而有太明顯的變化。我們推測的原因是aPNNEPS8同時具有同排和對排組態因此可有效的阻止π形式的堆疊。這些具有不同立體規則性的高分子也將會探討其在薄膜形態下的光致放光行為。在熔融態下,藉由調控其不同降溫速率來探討其光致放光行為。在慢速降溫下,其光致放光強度來得比快速降溫強是由於結晶誘導放光強度增強效應所導致。不會結晶的,在慢速降溫的形式下,其光致放光強度來得比快速降溫形式下來得強是由於不同的熱處理條件伴隨著不同的熱履歷和不同的自由容積還導致其立體障礙的變化。由於立體規則性效應,iPNNDPS17變化情形來得比sPNNDPS23和aPNNDPS8大。因此,具有不同立體規則之高分子確實會影響其在溶液和薄膜中的光致放光行為。
Abstract
A series of stereoregular polymers including atactic, syndiotactic and isotactic poly 4(N, N-diphenyl)styrene (PNNDPS) and poly 4(N, N-ethylphenyl)styrene (PNNEPS) were synthesized to exam the tacticity effect on the photoluminescence (PL) behavior. Also, different degrees of the regularity as well as the chemical modification of the fluorophor were explored in the stereoregular polymers. Because of the increase of the steric hindrance among the bulky triphenylamine pendants in the polymer chains, a red shift of the PL emission with an accompanying increase in the emissive intensity was found in contrast to the weakened emission of triphenylamine monomers.
In solution state, the PL spectra of these stereoregular polymers reveal multiple PL emissive bands including monomeric and aggregation emissions as evidenced by the time-resolved lifetime measurement. Because of the huge triphenylamine pendants, the triphenylamine pendants attached on the iPNNDPS17 (mmmmmm~50%) might encounter higher steric hindrance than that in the sPNNDPS23 (rrrrrr~59%) due to the stereoregularity evidenced by simulation. Accordingly, the iPNNDPS17 (mmmmmm~50%) exhibits more emissive intensity than the sPNNDPS23 (rrrrrr~59%) due to the effective blockage of the intramolecular rotation of the phenyl blade i.e., the restriction of intramolecular rotation (RIR). Accordingly, the RIR-active PNNDPS is highly sensitive to the temperature variations.
The chemical modification of the fluorophor was carried out to examine the effect of the chemical structure. By comparison, the sPNNDPS2 (rrrrrr~70%) with high regularity exhibits much higher emissive intensity than the sPNNDPS23 (rrrrrr~59%) with low regularity due to the less solubility. However, more intense PL emission can be found in the sPNNEPS17 than aPNNEPS8 due to the ethyl substitution of the fluorophor.
In aggregation solution, with the increase of the poor water contents, the PL emission decreases significantly in the sPNNDPS23 (rrrrrr~59%) and sPNNDPS2 (rrrrrr~70%) due to the formation of H-aggregate in which extra energetic loss is conducted. By contrast, the PL spectra display that the emissive intensity decreases first as fw=0.1~0.5 and then intensifies later as fw=0.6~0.9. This might be resulted from the competition between the π-π interaction and RIR effect. Interestingly, the PL emissive intensity drops down significantly in the sPNNEPS, whereas the PL emissive intensity is almost unchanged in the aPNNEPS8 with the increase of the poor water contents. We suggest that because the aPNNEPS8 might contain both syndiotactic and isotactic configurations, the isotactic configurations having the ethyl group pointing out of the plane may prevent the formation of the π-stacking between the fluorophors.
The PL behavior in thin film is also explored for these stereoregular polymers. After slow cooling from melt, the crystalline sPNNDPS2 (rrrrrr~70%) thin film exhibits very strong emission in comparison with the thin film after quenching from melt, indicating the crystallization-induced emission enhancement. Although the iPNNDPS17 (mmmmmm~50%) is noncrystallizable as evidenced by differential scanning calorimetry (DSC) and polarized light microscope (PLM), the PL emissive intensity of the iPNNDPS17 (mmmmmm~50%) thin film is significantly stronger after slow cooling from melt than that after quenching from melt. We suggest that this might be attributed to the free volume effect varied with the thermal history associated with the steric hindrance. Notably, this enhanced PL emission in the iPNNDPS17 (mmmmmm~50%) thin film is extremely larger than that in the sPNNDPS23 (rrrrrr~59%) and aPNNDPS8, indicating the stereoregularity effect associated with the RIR effect. By contrast, this free volume effect is not significant in the PNNEPS thin film due to the flexible ethyl substitutions. As a result, the stereoregular polymers with different tacticities and regularities indeed exhibit distinct PL behavior in solution and thin film.
目次 Table of Contents
Abstract III
Contents IV
List of Tables VI
List of Figures VII
Chapter 1 Introduction 1
1.1 Principle of Photoluminescence 1
1.2 Excimer versus Aggregation 3
1.3 ACQ versus AIE 10
1.3.1 Aggregation-Caused Quenching (ACQ) 10
1.3.2 Twist Intramolecular Charge Transfer (TICT) 11
1.3.3 Aggregation-Induce Emission (AIE) 13
1.3.4 Crystallization-Induce Emission (CIE) 17
1.4 Photoluminescence of Polymeric Materials 19
1.4.1 Main Chain conjugated polymers 19
1.4.2 Side Chain conjugated polymers 24
1.5 Tacticity of Polymers 30
1.6 Photoluminescence of Tactic Polymers 34
Chapter 2 Objectives 38
Chapter 3 Experimental Section 39
Chapter 4 Results & Discussion 43
4.1 Thermal Behavior of Luminescence Polymers 43
4.1.1 Thermal stability 43
4.1.2 Thermal behavior 45
4.2 Photoluminescence of Stereoregular Polymers in Solution 47
4.2.1 Photoluminescence of Monomers and Polymers 47
4.2.2 Solvent Effect 48
4.2.3 Concentration Effect 53
4.2.4 Aggregation Effect 68
4.2.5 Temperature Effect 93
4.3 Photoluminescence of Polymers in Thin Film 95
Chapter 5 Conclusions 107
Chapter 6 References 112
參考文獻 References
1. Winnik, F. M. Chem. Rev. 1993, 93, 587.
2. Birks, J. B. Excimers Rep. PRog. Phys. 1975, 38, 903.
3. Birks, J. B.; Christophorou, L. G. Spectrochim. Acta. 1963, 19, 401.
4. Birks, J. B.; Lumb, M. D.; Munro, I. H. Proc. R. Soc. London 1963, 275, 575.
5. Wilhelm, M.; Zhao, C.-L.; Wang, Y.; Xu, R.; Winnik, M. A. Macromolecules 1981, 24, 1033.
6. Jhaveri, S. B.; Beinhoff M.; Hawker, C. J.; Carter, K. R.; Sogah, D. Y. ACS nano 2008, 2, 719.
7. Sagara, Y.; Kato, T. Angew. Chem. Int. Ed. 2008, 47, 575.
8. Birks, J. B. Photophysics of Aromatic Molecules Wiley, London, 1970
9. Robertson, J. M.; White, J. G. J. Chem. Soi. 1947, 358.
10. Camerman, A.; Trotter, J. Acta. Cryst. 1965, 18, 636.
11. Scheibe, G. Angew. Chem. 1937, 50, 51.
12. Scheibe, G.; Kandler, L.; Ecker, H. Naturwissenschaften 1937, 25, 75.
13. Scheibe, G. Angew. Chem. 1937, 50, 212.
14. Scheibe, G. Angew. Chem. 1936, 49, 563.
15. Jelley, E. E. Nature 1936, 138, 1009.
16. Jelley, E. E. Nature 1937, 139, 631.
17. Sheppard, S. E. Proc. R. Soc. London Ser. A 1909, 82, 256.
18. Sheppard, S. E. Rev. Mod. Phys. 1942, 14, 303.
19. Scheibe, G. Kolloid-Z. 1938, 82, 1.
20. Kopainsky, B.; Hallermeier, J. K.; Kaiser, W. Chem. Phys. Lett. 1981, 83, 498.
21. Herz, A. H. Adv. Colloid Interface Sci. 1977, 8, 237.
22. Mӧbius, D. Adv. Mater. 1995, 7, 437.
23. Egorov, V. V. J. Chem. Phys. 2002, 116, 3090.
24. Knoester, J. Int. J. Photoenergy 2006, 5, 4.
25. The Theory of Photographic Process (Ed.: T. J. James), Macmillian, New York, 1977.
26. Kuhn, H.; Mӧbius, D. in Investigations of Surface and Interfaces, 2nd ed.; Rossiter, B. W.; Baetzold R. C. Eds., John Wiley & Sons, Inc.: New York, 1993; Vol. IXB, p 375.
27. Rossiter, B.W.; Baetzold, R. C.; Wiley New York, 1993, pp. 375.
28. McRae, E. G.; Kasha, M. J. Chem. Phys. 1958, 28, 721.
29. Kasha, M.; Rawls, R.; El-Bayoumi, M. A. Pure Appl. Chem. 1965, 11, 371.
30. Forster, Th.; Kasper, K. Z. Phys. Chem. (Munich) 1954, 1, 275.
31. Malkin, J. Photophysical and Photochemical Properties of Aromatic Compounds CRC, Boca Raton, 1992.
32. Turro, N. J. Modern Molecular Photochemistry University Science Books, Valley, M. 1991.
33. Li, X. C.; Moratti, S. C. in Photonic Polymer Systems Dekker, M. New York, 1998.
34. Hong, Y.; Lam, W. Y.; Tang, B. Z. Chem. Comm. 2009, 4332.
35. Liu, J.; Lam, W. Y.; Tang, B. Z. J. Inorg. Organomet. Polym. 2009, 19, 249.
36. Thomas III, S. W.; Joly, G. D.; Swager, T. M. Chem. Rev. 2007, 107, 1339.
37. Belletete, M.; Bouchard, J.; Leclerc, M.; Durocher, G. Macromolecules 2005, 38, 880.
38. Menon, A.; Galvin, M.; Walz, K. A.; Rothberg, L. Synth. Met. 2004, 141, 197.
39. Chen, C.-T. Chem. Mater. 2004, 16, 4389.
40. Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Macromolecules 1999, 32, 5810.
41. Jakubiak, R.; Collison, C. J.; Wan, W. C.; Rothberg, L. J. Phys. Chem. A 1999, 103, 2394.
42. Grell, M.; Bradley, D. D. C.; Long, X.; Chamberlain, T.; Inbasekaran, M.; Woo, E. P.; Soliman, M. Acta Polym. 1998, 49, 439.
43. Lemmer, U.; Heun, S.; Mahrt, R. F.; Scherf, U.; Hopmeier, M.; Siegner, U.; Gobel, E. O.; Mullen, K.; Bassler, H. Chem. Phys. Lett. 1995, 240, 373.
44. Slavik, J. Fluorescence Microscopy and Fluorescent Probes, Plenum, New York, 1996.
45. Valeur, B. Molecular Fluorescence: Principle and Applications Wiley-VCH, Weinheim, 2002.
46. Advanced Concepts in Fluorescence Sensing, ed. Geddes, C. D.; Lakopwicz, J. R.; Springer; Norwell 2005.
47. Fluorescence Sensors and Biosensors, ed. Thompson; R. B. CRC, Boca Raton, 2006.
48. Tan, W. H.; Wang, K. M.; Drake, T. J. Curr. Opin. Chem. Biol. 2004, 8, 547.
49. Sapsford, K. E.; Berti, L.; Medintz, I. L. Angew. Chem. Int. Ed. 2006, 45, 4562.
50. Borisov, S. M.; Wolfbeis, O. S. Chem. Rev. 2008, 108, 423.
51. Grimsdale, A. C.; Mullen, K. Adv. Polym. Sci. 2008, 212, 1.
52. Wong, W.W. H.; Holmes, A. B. Adv. Polym. Sci. 2008, 212, 85.
53. Boudreault, P. L. T.; Blouin, N.; Leclerc, M. Adv. Polym. Sci. 2008, 212, 99.
54. Sanchez; J. C.; Trogler, W. C. Macromol. Chem. Phys. 2008, 209, 1527.
55. Zhang, Y.; Liu, B.; Cao, Y. Chem.–Asian J. 2008, 3, 739.
56. Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 1740.
57. Tang, B. Z.; Zhan, X.; Yu, G.; Lee, P. P. S.; Liu, Y.; Zhu, D. J. Mater. Chem. 2001, 11, 2974.
58. Gustafsson, G.; Gao, Y.; Treacy, G. M.; Klavetter, F.; Colaneri, C.; Heeger, A. J. Nature 1992, 357, 477.
59. Wang, P. W.; Liu, Y. J.; Devadoss, C.; Bharathi, P.; Moore, J. S. Adv. Mater. 1996, 8, 237.
60. Freeman, A. W.; Koene, S. C.; Malenfant, P. R. L.; Thompson, M. E.; Frechet, J. M. J. J. Am. Chem. Soc. 2000, 122, 12, 385.
61. Baskar, C.; Lai, H. Y.; Valiyaveettil, S. Macromolecules 2001, 34, 6255.
62. Halls, J. J. M.; Walls, C. A.; Greenham, N. C.; Marseglia, E. A.; Friend, R. H.; Moratti, S. C.; Holmes, A. B. Nature 1995, 376, 498.
63. Szczesna, M.; Galas, E.; Bielecki, S. J. Mol. Catal. B 2000, 111, 671.
64. Heeger, P. S.; Heeger, A. J. Proc. Natl. Acad. Sci. USA 1999, 96, 12, 219.
65. Schenning, A.; Peeters, E.; Meijer, E. W. J. Am. Chem. Soc. 2000, 122, 4489.
66. Hecht, S.; Frechet, J. M. J. Angew. Chem. Int. Ed. 2001, 40, 74.
67. Scherf, U. J. Mater. Chem. 1999, 9, 1853.
68. Hide, F.; Diaz-Garcia, M. A.; Schwartz, B. J.; Heeger, A. J. Acc. Chem. Res. 1997, 30, 430.
69. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J.-L.; Lӧgdlund, M.; Salaneck, W. R. Nature 1999, 397, 121.
70. Braun, D.; Heeger, A. J. Appl. Phys. Lett. 1991, 58, 1982.
71. Gustafsson, G.; Cao, Y.; Treacy, G. M.; Klavetter, F.; Colinari, N.; Heeger, A. J. Nature 1992, 357, 477.
72. Bharathan, J.; Yang, Y. Appl. Phys. Lett. 1998, 72, 2660.
73. Hebner, T. R.; Wu, C. C.; Marcy, D.; Lu, M. H.; Strum, J. C. Appl.Phys. Lett. 1998, 72, 519.
74. Blouin, N.; Michaud, A.; Leclerc, M. Adv. Mater. 2007, 19, 2295.
75. Innis, P. C.; Masdarolomoor F.; Kane-Maguire, L. A. P.; Forster, R. J.; Keyes, T. E.; Wallace, G. G. J. Phys. Chem. B 2007, 111, 12738.
76. Li, Y.; Vamvounis, G.; Holdcroft, S. Macromolecules 2002, 35, 6900.
77. Bunz, U. H. F.; Imhof, J. M.; Bly, R. K.; Bangcuyo, C. G.; Rozanski, L.; Vanden Bout, D. A. Macromolecules 2005, 38, 5892.
78. Samuel, I. D. W.; Rumble, G.; Friend, R. H.; In Primary Photoexcitations in Conjugated Polymers: Molecular Excitation versus Semiconductor Band Model; Sariciftci, N. S., Ed.; World Scientific Publishing Co.: Singapore, 1997.
79. Science 2002, 295, 2313-2556. Special issue on Supramolecular Chemistry and Self-Assembly. In particular: Lehn, J. M. Science 2002, 295, 2400-2402.
80. Yarari, S. S.; Bovey, F. A.; Lumry, R. Nature 1963, 200, 242.
81. Vala, M. T.; Haebig, J.; Rice, S. A. J. Chem. Phys. 1965, 43, 886.
82. Longworth, J. W. Biopolymers 1966, 4, 1131.
83. Gebler, D. D.; Wang, Y.Z.; Fu, D, -K.; Swager, T. M.; Epstein, A. J. J. Chem. Phys.1998.
84. Johnson, P. C.; Offen, H. W. J. Chem. Phys. 1971, 55, 2945.
85. Klӧpffer, W. J. Chem. Phys. 1969, 50, 2337.
86. Klӧpffer, W.; Bunsenges, Ber. Chem. Phys. 1969, 73, 864.
87. Yin, X. Y.; Ye, C.; Ma, X.; Chen, E. Q.; Qi, X. Y.; Duan, X. F.; Wan, X. H.; S. Cheng, Z. D.; Zhou, Q. F. J. Am. Chem. Soc. 2003, 125, 6854.
88. Nakano, T.; Yade, T. J. Am. Chem. Soc. 2003, 125, 15474.
89. Rathore, R.; Abdelwahed, S. H.; Guzei, I. A. J. Am. Chem. Soc. 2003, 125, 8712.
90. Lin, H. –C.; Chu, H. –C.; Lee, Y. –H.; Hsu, S. –J.; Yang, P. –J.; Yabushita, A. J. Phys. Chem. B 2011, 115,8845.
91. Hong, J. L.; Lai, C. T. J. Phys. Chem. B 2010, 114, 10302.
92. Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G. J. Am. Chem. Soc. 1955, 77, 1708.
93. Natta, G.; Pino, P.; Mazzanti, G.; Giannini, U. J. Am. Chem. Soc. 1957, 79, 2975.
94. Lam, J. W. Y.; Tang, B. Z.; J. Polym. Sci. Part A: Polym. Chem. 2003, 41, 2607.
95. Dong, Y.; Lam, J. W. Y.; Peng, H.; Cheuk, K. K. L.; Kwok, H. S.; Tang, B. Z. Macromolecules 2004, 37, 6408.
96. Lam, J. W. Y.; Tang, B. Z. Acc. Chem. Res. 2005, 38, 745.
97. Lam, J. W. Y.; Dong, Y.; Law, C. C. W.; Dong, Y. Q.; Cheuk, K. K. L.; Lai, L. M.; Li, Z.; Sun, J.; Chen, H.; Zheng, Q.; Kwok, H. S.; Wang, M.; Feng, X.; Shen, J.; Tang, B. Z. Macromolecules 2005, 38, 3290.
98. Lam, J. W. Y.; Dong, Y.; Kwok, H. S.; Tang, B. Z. Macromolecules 2006, 39, 6997.
99. Qin, A.; Jim, C. K. W.; Tang, Y.; Lam, J. W. Y.; Liu, J.; Mahtab, F.; Gao, P.; Tang, B. Z. J. Phys. Chem. B 2008, 112, 9281.
100. Yang, Y.; Pei, Q.; Heeger, A. J. J. Appl. Phys. 1996, 79, 934.
101. Kranzelbinder, G.; Byrne, H. J.; Hallstein, S.; Roth, S.; Leising, G.; Scherf, U. Phys. Rev. B 1997, 56, 1632.
102. Cerullo, G.; Stagira, S.; Nisoli, M.; De Silvestri, S.; Lanzani, G.; Kranzelbinder, G.; Graupner, W.; Leising, G. Phys. Rev. B 1998, 57, 12,806.
103. Berresheim, M.; Muller, M.; Mullen, K. Chem. Rev. 1999, 99, 1747.
104. Nakazawa, M.; Han, Y. K.; Fu, H.; Matsuoka, S.; Kwei, T. K.; Okamoto, Y. Macromolecules 2001, 34, 5975.
105. Yamamoto, T.; Maruyama, T.; Zhou, Z. H.; Ito, T.; Fukuda, T.; Yoneda, Y.; Begum, F.; Ikeda, T.; Sasaki, S.; Takeoe, H.; Fukuda, A.; Kubota, K. J. Am. Chem. Soc. 1994,116, 4832.
106. Blatchford, J. W.; Jessen, S. W.; Lin, L. B.; Gustafson, T. L.; Fu, D. K.; Wang, H. L.; Swager, T. M.; MacDiarmid, A. G.; Epstein, A. J. Phys. Rev. B 1996,54, 9180.
107. Ram, S.; Mandal, T. K. Chem. Phys.s 2004, 303, 121.
108. Kuo, S.; Asanov, AN.; Oldham, PB. Instrum. Sci. Tech. 1998, 26, 375.
109. Gettinger, C. L.; Heeger, A. J.; Drake, J. M.; Pine, D. J. J. Chem. Phys. 1994, 101, 1673.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code