Responsive image
博碩士論文 etd-0806112-155520 詳細資訊
Title page for etd-0806112-155520
論文名稱
Title
由層板嵌段共聚物之自組裝製備光子晶體
Photonic Crystals from Self-Assembly of Oriented Lamella-Forming Block Copolymers
系所名稱
Department
畢業學年期
Year, semester
語文別
Language
學位類別
Degree
頁數
Number of pages
116
研究生
Author
指導教授
Advisor
召集委員
Convenor
口試委員
Advisory Committee
口試日期
Date of Exam
2012-07-06
繳交日期
Date of Submission
2012-08-06
關鍵字
Keywords
微觀相分離、高分子嵌段共聚物、自組裝、光子晶體、高分子
Block Copolymer, Microphase separation, Self Assembly, Polymer, Photonic Crystals
統計
Statistics
本論文已被瀏覽 5664 次,被下載 170
The thesis/dissertation has been browsed 5664 times, has been downloaded 170 times.
中文摘要
本研究使用超高分子量之高分子嵌段共聚合物(PS-b-PI)以自組裝製備一維光子晶體。超高分子量之PS-b-PI塊材其有序微觀相分離之層板結構可藉由穿透式電子顯微鏡及超小角度X光散射來觀測。本研究使用基材誘導結合溶劑退火於PS-b-PI薄膜來製備大範圍有序排整之平行基材層板結構。其薄膜顯微結構之微觀取向可藉由低略角超小角度X光散射、掃瞄式探針電子顯微鏡及橫截面穿透式電子顯微鏡觀測之方式來觀察。
經甲苯為溶劑成形於誘導基材及無改質基材之薄膜,未經溶劑退火前為一無序之形態,其主要是因為在形成薄膜的過程中甲苯溶劑快速的揮發所導致。經由中性偏PS溶劑(如:二乙烯苯)、PS之選擇性溶劑(如:苯)或是PI之選擇性溶劑(如:環己烷)退火後,PS-PI薄膜可得到平行基材之層板顯微結構於PS改質基材。相反的,由甲苯成形之PS-PI薄膜於改質基材上經由中性溶劑-甲苯退火及薄膜於無改質基材經PS之選擇性溶劑-苯退火後,兩者皆同時具有平行及垂直之層板顯微結構。其指出形成平行層板之顯微結構主要受溶劑誘導及基材誘導之影響。
相較於從甲苯成形之薄膜其無序結構,從二乙烯苯成形於改質基材之薄膜具有序平行基材並伴隨少量缺陷之層板顯微結構,而成形在無改質基材上之薄膜具有序平行於基材並伴隨較大量缺陷之層板顯微結構。其結果指出PS改質之基材伴演重要之角色於製備有序平行排列之層板顯微結構。當PS-PI薄膜之初始形態達到較穩定之相分離形態時,其顯微結構取向之排列較難再經由溶劑退火來改變。我們假設PS-b-PI薄膜其較穩定之初始微觀相分離形態有一較高的能量障礙使的其微結構較難重新排整。
PS-PI厚膜亦可藉由顯微取向控制來達到大範圍有序之平行層板顯微結構。同步偵測紫外光-可見光反射光譜可觀測其PS-PI厚膜在溶劑退火過程中,其反射光波段可由紫外光波段位移至可見光波段。然而,當溶劑移除時其反射波段會到初始狀態,其指出為一可逆過程。因此,本實驗成功使用溶劑膨潤來製備大範圍有序排列之PS-PI層板結構一維光子晶體膜。
Abstract
The fabrication of one-dimensional (1-D) polymeric photonic crystals from the self-assembly of ultra-high-Mw polystyrene-b-polyisoprene (PS-PI) block copolymers (BCPs) were conducted in this study. Well-ordered microphase-separated lamellar structures can be observed in the ultra-high-Mw PS-PI BCPs in the bulk by transmission electron microscopy (TEM) and ultra-small angle X-ray scattering (USAXS). To fabricate large-area and well-oriented lamellar microstructures with parallel orientation to the substrate, substrate-induced microstructural orientation with the accompanying solvent annealing method (i.e., solvent-induced orientation) was carried out in the PS-PI film. By grazing-incidence ultra-small angle X-ray scattering (GIUSAXS), scanning probe microscope (SPM) and cross-sectional TEM morphological observation, identification of the microstructural orientation in the PS-PI film can be achieved.
A disordered wormlike morphology is observed in the as-spun PS-PI thin film from toluene on the PS-grafting substrate and on neat glass or wafer. This is attributed to the fast solidification of the disordered microstructure due to fast evaporation rate of the toluene solvent. After solvent annealing by the PS-selective or PI-selective solvents such as divinylbenzene (DVB) (neutral but highly PS-selective), benzene (PS-selective) and cyclohexane (PI-selective), parallel lamellar microstructures can be obtained in the PS-PI films on the PS-grafting substrate. By contrast, the coexistence of parallel and perpendicular lamellar microstructures is obtained in the PS-PI film from toluene after solvent annealing by neutral toluene on the PS-grafting substrate or by PS-selective benzene on the neat glass or wafer. This indicates that the formation of the parallel lamellar microstructures is mainly determined by both solvent-induced and substrate-induced orientation.
In contrast to the as-spun disordered morphology from toluene, well-ordered parallel lamellar microstructures with few defects was found in the as-spun PS-PI film from DVB on the PS-grafting substrate, whereas parallel lamellar microstructures with many defects was observed in the as-spun PS-PI film from DVB on the neat glass or wafer. This further demonstrates that the PS-grafting substrate indeed plays an important role on the fabrication of well-ordered parallel lamellar microstructures. Interestingly, once the initial morphology of the PS-PI BCP reaches a relative stable state (i.e., parallel lamellar microstructures versus disordered wormlike morphology), it is hardly to trigger the microstructural reorientation by the subsequent solvent annealing. We suggest that the stable initial morphology in the PS-PI film may create high energy barrier for microstructural reorientation.
With the controllable microstructural orientation, a PS-PI thick film having large-area and well-oriented parallel lamellar microstructures can be successfully carried out. Therefore, 1-D polymeric photonic crystals from the self-assembly of the lamella-forming PS-PI BCPs can be achieved. The in-situ UV reflectance spectra show that the reflective band shifts from ultraviolet wavelength to visible wavelength was observed in the lamella-forming PS-PI thick film with elapse of time by solvent annealing. Notably, the band gap can be recovered to the initial state once the solvent is removed, indicating the reversible process. As the results, the solvatochromic BCP photonic crystals can be successfully carried out by the manipulation of the solvent swelling in the large-area and well-oriented lamella-forming PS-PI BCP film.
目次 Table of Contents
Table of Contents
Abstract Ⅰ
Table of Contents Ⅳ
List of Tables Ⅶ
List of Figures Ⅷ
Chapter 1. Introduction 1
1.1 Photonic Crystals 1
1.2 Block Copolymer Photonic Crystals 4
1.2.1 Block Copolymer (BCP) Self-assembly 4
1.2.2 Fabrication of Photonic Crystals from BCP Self-assembly 6
1.2.3 Stimuli-Responded BCP Photonic Crystals 11
1.3 Control of Optical Reflectivity of BCP Photonic Crystals 15
1.4 Controlled Orientation of BCP Microphase Separation 18
1.4.1 Shear-induced Orientation 18
1.4.2 Substrate-induced Orientation 19
1.4.3 Solvent evaporation-induced Orientation 21
Chapter 2. Objectives 22
Chapter 3. Materials and Experimental Methods 24
3.1 Materials 24
3.2 Sample Preparation 25
3.2.1 Bulks Samples Preparation 25
3.2.2 Thin Film Samples Preparation 25
3.3 Substrate Modification 26
3.4 Microstructural Characterization 26
3.4.1 Scanning Probe Microscopy (SPM) 26
3.4.2 Transmission Electron Microscopy (TEM) 27
3.4.3 Ultra-small Angle X-ray Scattering (USAXS) 27
3.4.4 Grazing-incidence Ultra-small Angle X-ray Scattering(GIUSAXS) 28
Chapter 4. Results and Discussion 29
4.1. Characterization of Ultra-High-Mw PS-PI BCPs 29
4.2. Control of Microstructural Orientation by Solvent Annealing On PS-Grafting Substrate 34
4.2.1. Effect of PS-grafting Substrate on Microstructural Orientation 34
4.2.2 BCP Self-Ordering Process and Microstructural Reorientation by Solvent Annealing in PS-PI Films from Toluene 37
4.2.3 BCP Self-Ordering Process and Microstructural Reorientation by Solvent Annealing in PS-PI Films from DVB 65
4.2.4 Fabrication of 1-D BCP Photonic Crystal and its Optical Properties 81
Chapter 5. Conclusions 85
Chapter 6. Referances 89
參考文獻 References
1. Kertesz, K.; Balint, Z.; Vertesy, Z.; Mark, G. I.; Lousse, V.; Vigneron, J. P.; Rassart, M.; Biro, L. P. Phys. Rev. E.2006, 74, 021922.
2. Yablonovitch, E. Phys. Rev. Lett.1987, 58, 2059.
3. Iohn, S. Phys. Rev. Lett.1987, 58, 2486.
4. Vlasov, Y A.; O'Boyle, M.; Harnann, H. F.; McNab, S. J. Nature 2005, 438, 65.
5. Bayindir, M.; Sorin, F.; Abouraddy, A. F.; Viens, J.; Hart, S. D.; Joannopoulos, J. D.; Fink, Y. Nature 2004, 431, 826.
6. J. C. Knight, T. A. Birks, P. S. Russell, and D. M. Atkin, Optics Letters 1991, 21, 1547.
7. T. F. Krauss, R. M. DeLaRue, and S. Brand, Nature 1996, 383, 699.
8. Busch, K.; John, S. Phys. Rev. Lett.1999, 83, 967.
9. Finkelmann, H.; Kim, S. T.; Munoz, A.; Palffy-Muhoray, P.; Taheri, B. Adv. Mater. 2001, 13, 1069.
10. Foulger, S. H.; Jiang, P.; Lattarn, A.; Smith, D. W.; Ballato, J.; Dausch, D. E.; Grego, S.; Stoner, B. R. Adv. Mater. 2003, 15, 685.
11. Lee, Y. J.; Braun, P. V. Adv. Mater. 2003, 15, 563.
12. Ozaki, R.; Matsui, T.; Ozaki, M.; Yoshino, K. Appl. Phys. Lett.2003, 82, 3593.
13. Valkama, S.; Kosonen, H.; Ruokolainen, J.; Haatainen, T.; Torkkeli, M.; Serimaa, R.; Ten Brinke, G.; Ikkala, O Nat. Mater 2004, 3, 872.
14. Lawrence, J. R.; Shim, G H.; Jiang, P.; Han, M. G; Ying, Y. R.; Foulger, S. H. Adv. Mater. 2005, 17, 2344.
15. Arsenault, A. C.; Clark, T. J.; von Freymann, G.; Cademartiri, L.; Sapienza, R.; Bertolotti, J.; Vekris, E.; Wong, S.; Kitaev, V.; Manners, 1.; Wang, R. Z.; John, S.; Wiersma, D.; Ozin, G. A. Nat. Mater. 2006, 5, 179.
16. Lin. S.Y.; Fleming. J. G.; J. Lightwave Technol. 1999, 17, 1944.
17. Lin. S.Y.; Fleming. J. G.; Opt. Lett. 1999, 24, 49.
18. Krauss, T. F.; DeLaRue, R. M.; Brand, S. Nature 1996, 383, 699.
19. Noda, S.; Tomoda, K.; Yamamoto, N.; Chutinan, A. Science 2000, 289, 604.
20. Qi, M. H.; Lidorikis, E.; Rakich, P. T.; Johnson, S. G; Joannopoulos, J. D.; Ippen, E. P.; Smith, H. I. Nature 2004, 429, 538.
21. Tondiglia, V. P.; Natarajan, L. V.; Sutherland, R. L.; Tomlin. D.; Bunning, T. J. Adv. Mater. 2002, 14, 187.
22. Campbell, M.; , Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Nature 2000, 404, 53.
23. Holland, B. T.; Blanford, C. F.; Stein, A. Science 1998, 281, 538.
24. Braun, P. V.; Wiltzius, P. Nature 1999, 402,603.
25. Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
26. Park, C.; Yoon, J.; Thomas, E. L. Polymer 2003, 44, 6725.
27. Muthukumar M.; Ober C. K.; Thomas E. L. Science 1997, 277, 1225.
28. Thomas, E. L.; Anderson, D. M.; Henkee, C. S.; Hoffman, D. Nature 1988, 334, 598.
29. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
30. Joannopoulos, J. D.; Meade, R. D.; Winn, J. N., Princeton University Press: Princeton, 1995.
31. Kang, Y.; Walish, J. J.; Gorishnyy, T.; Thomas, E. L. Nat. Mater. 2007, 6, 957.
32. Urbas, A.’ Sharp, R.; Fink, Y.; Thomas, E. L.; Xenidou, M.; Fetters, L. J. Adv. Mater. 2000, 12, 812.
33. Deng, T.; Chen, C.; Honeker, C.; Thomas, E. L. polymer 2003, 44, 6549.
34. Urbas, A. M.; Maldovan, M.; Derege, P.; Thomas, E. L. Adv. Mater. 2002, 14, 1850.
35. Yoon, J. Ph.D. Thesis, Massachusetts Institute of Technology, Cambridge, 2006.
36. Joannopoulos, J. D.; Meade, R. D.; Winn, J. N., Photonic Crystals: Molding the Flow of Light. Princeton University Press: Princeton, NJ, 1995.
37. Kim, G.; Libera, M. Macromolecules 1998, 31, 2569.
38. Fukunaga, K.; Elbs, H.; Magerle, R.; Krausch, G. Macromolecules, 2000, 33, 947.
39. Keller, A.; Pedemonte, E.; Willmouth, F. M. Nature 1970, 225, 538.
40. Albalak, R. J.; Thomas, E. L.; J. Polym. Sci. Part B Polym. Phys. 1993, 32, 37.
41. Morkved, T. L.; Lu, M.; Urbas, A. M.; Ehrichs, E. E.; Jaeger, H. M.; Mansky, P.; Russell, T. P. Science 1996, 273, 931.
42. Thurn-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.; Shibauchi,T.; Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
43. Mansky, P.; Liu, Y.; Huang, E.; Russell, T. P.; Hawker, C. Science 1997, 275, 1458.
44. Huang, E.; Rockford, L.; Russell, T. P.; Hawker, C. J. Nature 1998, 395, 757.
45. Hashimoto, T.; Bodycomb, J.; Funaki, Y.; Kimishima, K. Macromolecules 1999, 32, 952.
46. Rockford, L.; Liu, Y.; Mansky, P.; Russell, T. P. Phys. Rev. Lett. 1999, 82, 2602.
47. Kim, S. O.; Solak, H. H.; Stoykovich, M. P.; Ferrier, N. J.; dePablo, J. J.; Nealey, P. F. Nature, 2003, 424, 411.
48. Segalman, R. A.; Yokoyama, H.; Kramer, E. J. Adv. Mater. 2001, 13, 1152.
49. Cheng, J. Y.; Ross, C. A.; Thomas, E. L.; Smith, H. I.; Vancso, G. J. Appl. Phys. Lett. 2002, 81, 3657.
50. Angelescu, D. E.; Waller, J. H.; Register, R. A.; Chaikin, P. M. Adv. Mater. 2005, 17, 1878.
51. Martin, T. M.; Young, D. M. Polymer 2003, 44, 4747.
52. Kim, S. H.; Misner, M. J.; Xu, T.; Kimura, M.; Russell, T. P. Adv. Mater. 2004, 16, 226.
53. Shin, C.; Ahn, H.; Kim, E.; Ryu, D. Y.; Huh, J.; Kim, K. W.; Russell, T. P. Macromolecules 2008, 41, 9140.
54. Kim, S. H.; Misner, M. J.; Russell, T. P. Adv. Mater. 2008, 20, 4851.
55. Ham, S.; Shin, C.;Kim, E.; Ryu, D. Y.; Jong, U.; Russell, T. P.; Hawker, C. J. Macromolecules 2008, 41, 6431.
56. Thurn-Albrecht, T.; DeRouchey, J.; Russell, T. P. Macromolecules 2000, 33, 3250.
57. Villar, N. A.; Rueda, D. R.; Ania, F.; Thomas, E. L.; Polymer 2002, 43, 5139.
58. Bodycomb, J.; Funaki, Y.; Kimishima, K.; Hashumoto, T. Macromolecules 1999, 32, 2075.
59. Drockenmuller, E.; Li, L. Y. T.; Ryu, D. Y.; Harth, E.; Russell, T. P.; Kim, H. C.; Hawker, C. J. J. polym. Sci. Part A: Polym. Chem. 2005, 43, 1028.
60. Grozea, C. M.; Li, I. T. S.; Grozea, D.; Walker, G. C. macromolecules 2011, 44, 3901.
61. Kim, S. H.; Misner, M. J.; Tang, L.; Gang, O.; Ocko, B. M.; Russell, T. P. macromolecules 2006, 39, 8473.
62. Peng, J.; Xuan, Y.; Wang, H.; Li, B.; Han, Y. Polymer 2005, 46, 5767.
63. Mansky, P.; Russell, T. P.; Hawker, C. J.; Pitsikalis, M.; Mays, J. Macromolecules 1997, 30, 6810.
64. Harant, A. W.; Bowman, C. N. J. Vac. Sci. Technol. B. 2005, 23, 1615.
65. Liu, D., Wang, T., Keddie, J. L. Langmuir 2009, 25, 4526.
66. Fukunaga, K., Hashimoto, T., Elbs, H., Krausch, George. macromolecules 2002, 35, 4406.
67. Wang, C. -H., Coutandin, J., Ehlich, D., Sillescu, H. macromolecules 1985, 18, 589.
68. Russell, T. P., Xu, T., Hawker, C. J. macromolecules 2005, 38, 2802.
69. Russell, T. P., Park, S., Wang, J. –Y., Kim, B., Chen, W. macromolecules 2007, 40, 9059.
70. Thomas, E. L., Kang, C., Kim, E., Baek, H., Hwang, K., Kwak, D., Kang, Y. J. Am. Chem. Soc. 2009, 131, 7538.
電子全文 Fulltext
本電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
論文使用權限 Thesis access permission:自定論文開放時間 user define
開放時間 Available:
校內 Campus: 已公開 available
校外 Off-campus: 已公開 available


紙本論文 Printed copies
紙本論文的公開資訊在102學年度以後相對較為完整。如果需要查詢101學年度以前的紙本論文公開資訊,請聯繫圖資處紙本論文服務櫃台。如有不便之處敬請見諒。
開放時間 available 已公開 available

QR Code